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Abstract. China has pledged reduction of carbon dioxide
(CO2) emissions per unit of gross domestic product (GDP)
by 60 %–65 % relative to 2005 levels, and to peak carbon
emissions overall by 2030. However, the lack of observa-
tional data and disagreement among the many available in-
ventories makes it difficult for China to track progress toward
these goals and evaluate the efficacy of control measures. To
demonstrate the value of atmospheric observations for con-
straining CO2 inventories we track the ability of CO2 con-
centrations predicted from three different CO2 inventories to
match a unique multi-year continuous record of atmospheric
CO2. Our analysis time window includes the key commit-
ment period for the Paris Agreement (2005) and the Bei-
jing Olympics (2008). One inventory is China-specific and
two are spatial subsets of global inventories. The inventories
differ in spatial resolution, basis in national or subnational
statistics, and reliance on global or China-specific emission
factors. We use a unique set of historical atmospheric obser-
vations from 2005 to 2009 to evaluate the three CO2 emis-
sions inventories within China’s heavily industrialized and
populated northern region accounting for∼33 %–41 % of na-
tional emissions. Each anthropogenic inventory is combined
with estimates of biogenic CO2 within a high-resolution at-
mospheric transport framework to model the time series of

CO2 observations. To convert the model–observation mis-
match from mixing ratio to mass emission rates we distribute
it over a region encompassing 90 % of the total surface influ-
ence in seasonal (annual) averaged back-trajectory footprints
(L_0.90 region). The L_0.90 region roughly corresponds to
northern China. Except for the peak growing season, where
assessment of anthropogenic emissions is entangled with the
strong vegetation signal, we find the China-specific inven-
tory based on subnational data and domestic field studies
agrees significantly better with observations than the global
inventories at all timescales. Averaged over the study time
period, the unscaled China-specific inventory reports sub-
stantially larger annual emissions for northern China (30 %)
and China as a whole (20 %) than the two unscaled global
inventories. Our results, exploiting a robust time series of
continuous observations, lend support to the rates and geo-
graphic distribution in the China-specific inventory Though
even long-term observations at a single site reveal differences
among inventories, exploring inventory discrepancy over all
of China requires a denser observational network in future
efforts to measure and verify CO2 emissions for China both
regionally and nationally. We find that carbon intensity in the
northern China region has decreased by 47 % from 2005 to
2009, from approximately 4 kg of CO2 per USD (note that
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all references to USD in this paper refer to USD adjusted for
purchasing power parity, PPP) in 2005 to about 2 kg of CO2
per USD in 2009 (Fig. 9c). However, the corresponding 18 %
increase in absolute emissions over the same time period af-
firms a critical point that carbon intensity targets in emerging
economies can be at odds with making real climate progress.
Our results provide an important quantification of model–
observation mismatch, supporting the increased use and de-
velopment of China-specific inventories in tracking China’s
progress as a whole towards reducing emissions. We empha-
size that this work presents a methodology for extending the
analysis to other inventories and is intended to be a com-
parison of a subset of anthropogenic CO2 emissions rates
from inventories that were readily available at the time this
research began. For this study’s analysis time period, there
was not enough spatially distinct observational data to con-
duct an optimization of the inventories. The primary intent of
the comparisons presented here is not to judge specific inven-
tories, but to demonstrate that even a single site with a long
record of high-time-resolution observations can identify ma-
jor differences among inventories that manifest as biases in
the model–data comparison. This study provides a baseline
analysis for evaluating emissions from a small but important
region within China, as well a guide for determining optimal
locations for future ground-based measurement sites.

1 Introduction

China’s contribution to world CO2 emissions has been
steadily growing, becoming the largest in the world in 2006.
China has accounted for 60 % of the overall growth in global
CO2 emissions over the past 15 years (US EIA, 2017) Un-
der the United Nations Framework Convention on Climate
Change (UNFCCC) 2015 Paris Agreement, China has com-
mitted to reducing its carbon intensity (CO2 emissions per
unit of gross domestic product, GDP) by 60 %–65 % rela-
tive to the baseline year of 2005, and to peak carbon emis-
sions overall by or before 2030. Demonstration of progress
on emissions reduction and evaluation of how well specific
policies are working is hindered by large uncertainty in the
existing Chinese emission inventories. In 2012 the discrep-
ancy between data reported at national and provincial levels
was approximately half of China’s 2020 emission reduction
goals (US EIA, 2017; NDRC, 2015; Guan et al., 2012; Zhao
et al., 2012). Moreover, China is under mounting pressure
to address severe regional air pollution events that are of-
ten associated with CO2 emissions sources – vehicles, power
plants, and other fossil-fuel-burning operations. China’s 11th
Five Year Plan (11th FYP) of 2006–2010 included aggressive
measures to retire inefficient coal-fired power plants and im-
prove energy efficiency in other industries starting in 2007
(Zhao et al., 2013; Nielsen and Ho, 2013). A number of pol-
lution control measures that were implemented specifically

in preparation for the 2008 Beijing Summer Olympics were
also largely in effect by the end of 2007 (Nielsen and Ho,
2013; Wang et al., 2010).

A variety of top-down approaches including inverse anal-
ysis (Le Quéré et al., 2016) and comparison between atmo-
spheric observations and Eulerian forward model predictions
(X. Wang et al., 2013) have been used to evaluate and con-
strain emission estimates, albeit at coarse spatial resolution.
As noted by Wang et al. (2011) grid-based atmospheric mod-
els have difficulty in simulating high-concentration pollution
plumes at specific receptor sites that are too near the source
region. The expanding network of high-accuracy CO2 obser-
vations coupled with high spatial resolution transport models
is emerging as a viable tool for evaluating high-resolution
emission inventories (e.g., Sargent et al., 2018). In this pa-
per we adopt a Lagrangian transport model to simulate at-
mospheric mixing and transport. Continuous observations of
CO2 for the period 2005–2009 at Miyun, an atmospheric ob-
servatory about 100 km northeast of Beijing, provide a top-
down constraint for evaluating persistent bias among emis-
sions rates obtained from a suite of three independent an-
thropogenic emission inventories that were readily available
as spatially gridded fluxes.

The three inventories that are evaluated span a range of
bottom-up inventory approaches. They are not intended to
be an exhaustive set, but are examples to demonstrate the
capability to identify significant differences in the ability of
different inventories to match the long time series of observa-
tions. Emerging inventory approaches based on updated (yet
non-China-specific) point-source data and satellite observa-
tions of night lights as a proxy for spatial allocation of energy
production (Oda et al., 2018) were not readily available when
this analysis began. Two of the inventories, the Emissions
Database for Global Atmospheric Research (EDGAR; Eu-
ropean Commission, Joint Research Centre/Netherlands En-
vironmental Assessment Agency, 2013) and Carbon Diox-
ide Information Analysis Center (CDIAC), are spatial sub-
sets from larger global models of CO2 emissions (Euro-
pean Commission, Joint Research Centre/Netherlands Envi-
ronmental Assessment Agency, 2013; Andres et al., 2016a).
They rely on national-level energy statistics and global de-
fault values for sectoral emission factors, and they esti-
mate activity levels using generalized proxies (e.g., popula-
tion). The third inventory (ZHAO) is specific to China, with
greater reliance on energy statistics at provincial and indi-
vidual facility levels as well as emission factors from do-
mestic field studies (Zhao et al., 2012). The ZHAO inven-
tory was readily accessible at the time of this research and
represents increased efforts in recent years to incorporate
more China-specific data into emissions inventories. Other
China-specific inventories that have been recently developed
but were not readily available at the time of this research
include the Multi-resolution Emissions Inventory (MEIC,
http://www.meicmodel.org/, last access: 12 April 2019) and
an inventory by Shan et al., 2016. The primary intent of the
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comparisons presented here is not to judge specific invento-
ries, but to demonstrate that even a single site with a long
record of high-time-resolution observations can identify the
potential impact of major differences among inventories that
manifest as biases in the model–data comparison.

A study by Turnbull et al. (2011) used weekly flask obser-
vations to evaluate a hybrid approach to inventory construc-
tion where CDIAC and EDGAR estimates were spatially al-
located to a provincial emissions-based grid. However, to
our knowledge, none of the truly China-specific CO2 inven-
tories have been evaluated with independent high-temporal-
resolution atmospheric observations. The official national to-
tal for China’s 2005 CO2 emissions from energy-related ac-
tivities, used as the benchmark for the Paris commitment, is
approximately 5.4 Gt CO2 (NDRC, 2015). ZHAO, EDGAR,
and the CDIAC national total (Boden et al., 2016) report total
2005 energy-related CO2 emissions that are higher by 31 %
(7.1 Gt), 9 % (5.9 Gt), and 7 % (5.8 Gt), respectively. As the
official national total is not available in a spatially allocated
format, it cannot be tested by observations and we refer to it
only as a benchmark in our analysis. We will show that the
China-specific inventory (ZHAO) provides excellent agree-
ment with observations, and markedly more so than EDGAR
and CDIAC. The result provides guidance for efforts to as-
sess China’s emissions at larger scales as well as potential
updates for the Paris Agreement base-year emissions.

In order to independently evaluate and scale existing
bottom-up estimates of China’s CO2 emissions, we employ
a top-down approach using 5 years of continuous CO2 obser-
vations. Modeled concentrations of CO2 are obtained from
convolving hourly CO2 surface flux estimates with surface
influence estimates (“footprints”) derived from the Stochas-
tic Time-Inverted Lagrangian Transport Model driven with
meteorology from the Weather Research and Forecasting
Model version 3.6.1 (WRF-STILT; Lin et al., 2003; Nehrkorn
et al., 2010). NOAA CarbonTracker (CT2015) provides
modeled estimates of advected upwind background concen-
trations of CO2 that are enhanced or depleted by processes
in the study region. As atmospheric CO2 concentrations are
significantly modulated by photosynthetic and respiratory
fluxes, we additionally prescribe hourly biosphere fluxes of
CO2 using data-driven outputs from the Vegetation, Photo-
synthesis, and Respiration Model (VPRM) adapted for China
(Mahadevan et al., 2008; Dayalu et al., 2018a). VPRM pro-
vides a functional representation of biosphere fluxes based
on data from remote sensing platforms and eddy flux tow-
ers, with significantly better observationally validated perfor-
mance relative to subsets of global vegetation models (Day-
alu et al., 2018a). The WRF-STILT-VPRM framework has
been successfully adapted for similar emissions evaluation
studies in North America in regions where biogenic fluxes
dominate surface processes (e.g., Sargent et al., 2018; Kar-
ion et al., 2016; Matross et al., 2006). For the northern China
region, anthropogenic fluxes exceed biogenic fluxes for all
but the peak of growing season, when they are roughly com-

parable (Dayalu et al., 2018a), which reduces the magni-
tude of overall error from incorrect modeling of the bio-
sphere. In contrast to extensive measurement networks that
exist in North America, continuous high-temporal-resolution
measurements of CO2 necessary for inventory evaluation ap-
plications are sparse and very few datasets are available in
China (Wang et al., 2010). Despite this limitation, our site
provides valuable information and constraints on emissions
inventories: the long time series and spatial sampling hetero-
geneities, where the site receives both clean continental air
as well as air from one of the heaviest emitting regions of
China, present a powerful and unique dataset for the region.
Our inventory scaling is confined to the northern China re-
gion, but this region accounts for 33 %–41 % of China’s total
annual CO2 emissions from fossil-fuel combustion. Model–
observation mismatches can be converted from concentration
units (ppm) to mass units (Mt CO2) across the most relevant
area subset from modeled annual average surface sensitivity
footprints (ppm CO2 µmol−1 CO2 m2 s). Ultimately, we com-
pare the inventories by quantifying model–observation mis-
match for seasons (using additive mass units) and annually
(using scaling factors). We note that identical transport fields
and modeled biogenic fluxes are applied to all the anthro-
pogenic emission fields. Unresolved transport error and error
in biogenic fluxes undoubtedly contributes to scatter in the
model–data comparison. While random transport errors are
unlikely to generate consistent biases among the inventories,
systematic transport errors can be attributed to biases among
inventories with differing spatial allocations. Although the
interaction of systematic transport errors with differences in
spatial distribution could bias individual observations, aver-
aging over longer timescales (seasons, years) minimizes the
bias of individual points. With the available observational
data it is not possible to evaluate the error in spatial alloca-
tion of individual emissions inventories. For example, future
access to total column measurements and/or aircraft vertical
profiles would provide additional constraints on spatial allo-
cations of sources and sinks.

Section 2 of this paper describes the observational CO2
record used in this analysis. Section 3 details the analysis
methods, including WRF-STILT model configuration, a dis-
cussion of the main features of the inventories, error evalua-
tion, and inventory scaling methods. We present the results in
Sect. 4, beginning with an assessment of seasonality impacts.
We then compare inventory performance against observa-
tions across multiple timescales from hourly to annual. We
conclude Sect. 4 with scaling results, and a brief examination
of regional carbon intensity over the study period. Conclud-
ing remarks are provided in Sect. 5. Additional methodologi-
cal details are provided in the accompanying Supplement and
at https://doi.org/10.7910/DVN/OJESO0.
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2 CO2 observations

This study uses 5 years (2005–2009) of continuous hourly
averaged CO2 observations (LI-COR Biosciences Li-7000;
2σ analytical precision of 0.08 ppm), measured at a site in
northern China (Miyun; 40◦29′ N, 116◦46.45′ E). The Miyun
receptor is an atmospheric measurement station in a rural
site 100 km northeast of the Beijing urban center (Fig. S2
in the Supplement). It was established in 2004 by collabo-
rating researchers at the Harvard China Project and operated
by researchers at Tsinghua University. The site is strategi-
cally located to capture both clean continental background
air from the west and northwest and polluted air from the
Beijing region to the southwest. Miyun is located south of
the foothills of the Yan mountains; the region consists of
grasslands, small-scale agriculture intermingled with rural
villages and manufacturing complexes, and mixed temper-
ate forest. Land use varies from rural to suburban and dense
urban to the south towards Beijing center and sparsely pop-
ulated and wooded mountains to the north and west. Further
descriptions of the site and details of the instrumentation
including calibration strategy and assessment of long-term
drifts are provided in Wang et al. (2010). Average annual data
coverage (based on hourly data) over the study time period
was 83 % (range: 78 % to 92 %).

3 Methods

We evaluate the performance of the ZHAO, EDGAR, and
CDIAC inventories coupled with biogenic fluxes by model-
ing 5 years of hourly CO2 observations using the Stochas-
tic Time-Inverted Lagrangian Transport Model (STILT; Lin
et al., 2003) run in backward time mode driven by high-
resolution meteorology from the Weather Research and Fore-
casting Model version 3.6.1 (WRF). The WRF-STILT tool
models the surfaces that influenced each measurement hour
in the study domain (Fig. 1). Hourly vegetation CO2 fluxes
are prescribed by the VPRM adapted for China (Mahade-
van et al., 2008; Dayalu et al., 2018a). We categorize sea-
sons by months based on regional growing season patterns,
which are heavily dominated by winter wheat and corn dual-
cropping regions in the North China Plain (Dayalu et al.,
2018a). Winter wheat emergence in the spring and corn
emergence in later summer shift the seasonal patterns such
that regional seasons are more appropriately represented as
January, February, March (JFM, winter); April, May, June
(AMJ, spring); July, August, September (JAS, summer); and
October, November, December (OND, fall).

Ultimately, modeled concentrations of CO2 are obtained
from convolving hourly surface flux estimates with footprints
derived from the WRF-STILT framework. NOAA Carbon-
Tracker (CT2015) provides estimates of advected upwind
background concentrations of CO2 that are enhanced or de-
pleted by processes in the study region. Our final model–

Figure 1. Study domain configuration. Miyun receptor and Bei-
jing center are located within the innermost domain at a resolu-
tion of 3× 3 km. NOAA ESRL/WMO (WMO) flask sampling sites
used to evaluate bias in CT2015 modeled backgrounds are the solid
shapes; nearest CT2015 comparison pixel is the corresponding un-
filled shape.

measurement dataset is the subset consisting of local daytime
values (hourly data from 11:00 to 16:00 LT). Of this subset,
only individual hours for which observational data exist (i.e.,
non-missing data) are included. The final dataset was further
filtered to include only CT2015 background values satisfy-
ing true background criteria as described in Sect. 3.4 and in
Sect. S4 in the Supplement. As is typical for studies of this
nature, our analysis focuses on observations during the 11:00
to 16:00 LT period. The stronger vertical mixing in the day-
time atmosphere (notably absent at night) reduces the influ-
ence of extremely local emissions. We select the 11:00–16:00
window to avoid the presence of shallow inversion layers that
are poorly represented in STILT and use the period when ver-
tical mixing through the entire boundary layer is at its max-
imum (McKain et al., 2015; Sargent et al., 2018). We adjust
fluxes based on model–measurement mismatch of this final
data subset, focusing on the region that our model finds to
be the most influential to the signal measured at the receptor.
Method details and model components are described individ-
ually below.

3.1 WRF-STILT model configuration

The WRF-STILT particle transport framework and optimal
configuration have been extensively tested in several stud-
ies using midlatitude receptors (e.g., Sargent et al., 2018;
McKain et al., 2015; Kort et al., 2013; McKain et al.,
2012; Miller et al., 2012). WRF is configured with 41 ver-
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tical levels and two-way nesting in three domains, with the
outermost domain covering nearly seven administrative re-
gions (Figs. 1 and 2), defined according to convention in
Piao et al. (2009). The domain resolutions from coarsest
to finest are 27 km (d01), 9 km (d02), and 3 km (d03). Ini-
tial and lateral WRF boundary conditions are provided by
NCEP FNL Operational Model Global Tropospheric Analy-
ses at 1◦× 1◦ spatial 6-hourly temporal resolution (NCEP,
1999). Nudging of fields is implemented in the outer do-
main only, and never within the planetary boundary layer
(PBL). WRF output is evaluated against publicly accessi-
ble 24-hourly averaged observational datasets from the Chi-
nese Meteorological Administration (CMA); finer tempo-
ral resolution meteorological data are not publicly avail-
able. WRF run details are presented in Dayalu (2017) and
at https://doi.org/10.7910/DVN/OJESO0. A snapshot of re-
sults from comparison with China Meteorological Admin-
istration ground-station measurements is presented Sect. S1
and Figs. S1–S4 in the Supplement.

The STILT model is configured in backward time mode.
The particle release point is set as the Miyun measurement
sample inlet (the receptor). The inlet height is 158 ma.s.l.,
corresponding to 6 ma.g.l. In our study, the hilltop site
was located in an area where the surrounding land was not
very productive or intensively cultivated (Fig. S2). There is
a long history of using short towers in low-productivity ar-
eas for regional studies (e.g., NOAA Earth Systems Research
Laboratory – NOAA ESRL Barrow, Alaska, observatory at
11 ma.g.l.). In addition, the station is located on a small hill-
top, so even though the actual inlet height above ground is
low, it has a topographic advantage in that it effectively sam-
ples air from a greater height relative to the surroundings.
Topographic advantage was exploited in a similar manner in
Karion et al. (2016) in the context of an Alaskan CO2 study.
However, Karion et al. (2016) were able to use a suite of
additional data to confirm the validity of their assumption
including comparisons to concurrent aircraft measurements
and multiple inlets at 31.7, 17.1, and 4.9 ma.g.l. In our study,
independent verification from concurrent aircraft measure-
ments (for example) or multi-level inlet locations were not
available to quantify the impact of absolute and relative inlet
location on transport uncertainty.

Each hourly footprint (CO2 concentration attributed to
each unit of flux as ppmµmol−1 m2 s) provides an estimate
of surface influence on the measurement and is calculated
from releasing 500 particles from the measurement site (re-
ceptor) until they reach the outer domain boundaries up to
7 d back in time. The STILT 0.25◦× 0.25◦ footprint map
for each measurement hour up to 7 d back in time enables
assessment of regions in the study domain to which the re-
ceptor is most sensitive. These entire gridded footprints are
convolved with anthropogenic and biogenic CO2 flux esti-
mates to provide a final modeled concentration (ppm) of CO2
at the receptor. For clarity, we display the regions of impor-
tance to the receptor based on contours calculated from the

overall STILT footprints at the 50th (L_0.50 region), 75th
(L_0.75 region), and 90th (L_0.90 region) percentile levels
(Fig. 2). The percentile contours are calculated as follows:
the average (seasonal, annual) footprints from 2005 to 2009
are ordered from high to low. We multiply each fraction (0.5,
0.75, 0.9) with the summed footprints and use cumulative
sums of the ordered footprints as a guide to select all points
with influence magnitude equal to or greater than this cut-
off value. Figure S11 illustrates a single footprint map along
with the average influence and a plot of cumulative influ-
ence to demonstrate the percentile-level selection process.
We emphasize that we use the entire STILT footprint con-
volved with fluxes to estimate the receptor CO2 concentra-
tion. We only use the L_0.90 region to provide a reasonable
area across which to ascribe the effective inventory adjust-
ment (converted from parts per million model–observation
mismatch to mass units). As Fig. S11c shows, the L_0.90 re-
gion strikes a balance between capturing sufficient influence
while avoiding an unrealistically large adjustment region for
a single observation site. Conversely, corrections based on
the smaller L_0.75 region would include larger uncertainties
from the diffuse influence of emissions outside the L_0.75
region (not accounting for 25 % of average surface sensitiv-
ity), yet the model–observation mismatch would be ascribed
to a region approximately half the area of the L_0.90 region.
Deriving correction factors based on integration over the en-
tire L_0.90 region is a more conservative approach where
the model–observation mismatch in mass units is distributed
over a larger area.

Further model details are available in Sect. S2. Complete
WRF-STILT settings and STILT footprint files are available
from https://doi.org/10.7910/DVN/OJESO0.

3.2 Anthropogenic CO2 emissions inventories

ZHAO, EDGAR, and CDIAC report estimates of total an-
nual emissions of CO2 at 0.25◦× 0.25◦, 0.1◦× 0.1◦, and
1◦× 1◦ original grid resolutions, respectively. We regridded
the EDGAR and CDIAC inventories to the 0.25◦× 0.25◦

resolution, using the NCAR Command Language version
6.2.1 Earth System Modeling Framework “conserve” regrid-
ding algorithm to preserve the integral of emissions (Brown
et al., 2012). Differences between annual total emissions for
EDGAR and CDIAC inventories introduced by regridding
are smaller than the interannual trends or differences between
the inventories (Sect. S3 and Fig. S5). We present the main
components and defining features of the three anthropogenic
CO2 inventories below.

The ZHAO inventory provides estimates of total annual
emissions for 2005 through 2009. In addition, the spatial
location of emissions is given for years 2005 and 2009 on
a 0.25◦× 0.25◦ grid. Using 2005 and 2009 gridded values,
we calculate an average percent contribution of each grid cell
to the total emissions. The average contributions are used as
weights to spatially allocate 2006, 2007, and 2008 total an-
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Figure 2. 2005–2009 mean seasonal (a–d) and Annual (e) footprint contours, as percentiles of influence highlighted by administrative
region. Red, blue, and black contour lines represent 50th, 75th, and 90th percentile regions, respectively. Stippling represents location of
0.25◦× 0.25◦ footprint and inventory grid cell centers, colored by relevant administrative regions. Northern China (red stippling) is the
administrative region with predominant influence on Miyun observations, followed by Inner Mongolia and northeastern China. Southeastern
and central China have minimal representation, and only during the spring and summer seasons

nual emissions. We evaluate and justify this assumption in
detail in Sect. S3 and Fig. S6. The ZHAO inventory repre-
sents one of the first statistically rigorous bottom-up CO2 in-
ventories for China. It relies on provincial- and facility-level
data rather than national-level data, which has been noted
previously as a major uncertainty in Chinese emission in-
ventories; total CO2 emissions estimates based on provincial
data are typically higher than those using national statistics
(Zhao et al., 2013). Satellite observations of criteria air pol-
lutants (e.g., nitrogen dioxide, which serves as a proxy for
fossil fuel combustion) show greater agreement with provin-
cial statistics (Zhao et al., 2012). The increased use of China-
specific emission factors and activity levels based on domes-
tic field studies is a shift from other inventories that rely
heavily on global averages to estimate processes occurring in
China. Despite the increased incorporation of China-specific
field data, the largest sources of uncertainty to the ZHAO
inventory are industrial emission factors, and activity levels
across all sectors. Total uncertainty in the inventory is esti-
mated as −9 % to +11 % (Zhao et al., 2012).

The EDGAR emissions database continues to be a ma-
jor prior in atmospheric studies, and the CO2 inventory is
used to inform key global scientific results considered by
the UNFCCC Conference of Parties. The EDGAR global

inventory (atemporal EDGAR v4.2 FT2010 gridded emis-
sions) takes total annual estimates of national emissions
and downscales emissions to a 0.1◦× 0.1◦ as a function
of road and shipping networks, population density, energy
and manufacturing point sources, and agricultural land. Es-
timates for China are available for all 5 years as grid-
ded inventories. Reported uncertainties for global emissions
are ±10 % (https://themasites.pbl.nl/tridion/en/themasites/
edgar/documentation/uncertainties/index-2.html, last access:
10 February 2020). However, this applies to global averaged
uncertainty; we expect uncertainty for China to be much
higher.

We include the CDIAC inventory here due to its historical
prevalence as a benchmark inventory for global indicators,
including evaluations of carbon intensity provided by the
World Bank (World Bank, 2017). The CDIAC inventory
(v2016; https://doi.org/10.3334/CDIAC/ffe.ndp058.2016)
allocates estimates of national emissions to a 1◦× 1◦ grid,
primarily distributed according to human population density.
A thorough assessment of 2σ uncertainties in the CDIAC
spatial allocation of emissions shows considerable spread in
regional uncertainties (Andres et al., 2016).

Our study is not intended to be an exhaustive sampling
of inventory approaches but serves to demonstrate the util-
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ity of continuous high-accuracy observations as a top-down
constraint on emissions evaluations. Our inventory list no-
tably does not include emerging spatially resolved global
inventories (e.g., Open Data Inventory for Anthropogenic
Carbon Dioxide, ODIAC) (Oda et al., 2018) that were not
readily available at the time this work was conducted. At
1×1 km, ODIAC does have a high spatial resolution of night-
light proxy-based emissions; while this is a valuable method
for regions in Europe and North America for example, it is
less valuable for China where it is analogous to the CDIAC
population-based proxy. In China, power plant emissions are
typically located far from end-use regions and the night-light
proxy can often break down (R. Wang et al., 2013). Fur-
thermore, ODIAC power plant emissions use the 2012 Car-
bon Monitoring for Action (CARMA) database, which no-
tably does not incorporate China-specific power plant data;
in these instances, CARMA categorizes China’s power plants
as “non-disclosed plants” and reports using estimates de-
rived from statistical models using averaged emissions fac-
tors – comparable to methods in global inventories subset
over China (Ummel, 2012). One of our main goals is to
quantify model–observation mismatch associated with use
of China-specific power plant data, and ODIAC does not
address that issue particularly differently from other global
emissions inventories subset over China. For completeness,
however, evaluation of global inventories like ODIAC and
a suite of increasingly available China-specific inventories
(e.g., MEIC) would provide value as part of future model–
observation comparison efforts.

Based on multi-year means (2005 to 2009) and 95 % confi-
dence intervals derived from two-sample t tests, we find that
within the L_0.90 evaluation region EDGAR and CDIAC re-
port emissions that are significantly lower than ZHAO by
typically 20 % (−24 %, −16 %) and 36 % (−37 %, −34 %),
respectively. Across China’s administrative regions, the high-
est discrepancy between the global and regional inventories
is in northern China (ZHAO is approximately 30 % higher
than both EDGAR and CDIAC). In addition, northern China
represents one of the administrative regions with the highest
CO2 emissions density (2300 to 3300 MgCO2 km−2, com-
pared to the average of 700 MgCO2 km−2 averaged across
China) and is therefore a particularly rich spatial subset for
emissions inventory evaluation. A detailed breakdown of
emissions by region of China is provided ins Table S1 in the
Supplement. Spatial differences are displayed in Fig. S7.

Previous work has found that temporal variations in CO2
sources can be significant and surface CO2 can be perturbed
by between 1.5 and 8 ppm within source regions based on the
time of day and/or day of week, resulting from a combination
of changes in activity patterns as well as synoptic-scale trans-
port effects (Nassar et al., 2013). However, appropriate data
for establishing reasonable temporal scaling factors for data-
sparse regions such as China are difficult to obtain, and as in
the case of Nassar et al. (2013) China’s activity factors are
based on US activity factors weighted according to China’s

EDGARv4.2 emissions patterns. We applied the weekly and
diurnal Nassar et al. (2013) scaling factors to our emissions,
but these did not generate statistically significant differences
from the unscaled versions. These statistically insignificant
results suggest that a more rigorous set of temporal scaling
factors need to be developed for China. CDIAC does pro-
vide monthly gridded inventories with seasonality embed-
ded. However, predictions based on that seasonality deviated
even further from the observations than predictions based on
constant annual emissions. In the CDIAC global dataset, the
seasonality in emissions is based upon generalized global ac-
tivity factors that are not necessarily appropriate for estimat-
ing seasonality of human activity in China. Therefore, in this
study we do not explicitly consider diel and seasonal varia-
tion in anthropogenic CO2 fluxes.

3.3 Vegetation flux inventory

We prescribe biotic contributions to the CO2 signal by adapt-
ing the VPRM model output for the study domain to generate
0.25◦×0.25◦ gridded estimates of hourly CO2 net ecosystem
exchange (NEE) from 2005 to 2009. Details of the VPRM
model and output for China are presented in Dayalu et al.
(2018a). The VPRM is driven by 8 d 500 m MODIS sur-
face reflectance values and 10 min averages of WRF down-
ward shortwave radiation and surface temperature fields.
The VPRM parameters are calibrated using eddy flux mea-
surements in the study domain representing each ecosys-
tem type classified according to the International Geosphere-
Biosphere Programme (IGBP) scheme. Calibration and eval-
uation eddy-flux data are obtained from FluxNet and Chi-
naFlux collaborators. The L_0.90 region is dominated by
croplands (Fig. S8), in particular the winter wheat and corn
dual cropping that characterizes the North China Plain (Day-
alu et al., 2018a). We use one biosphere model in this study
to simplify our assessment of variations across the different
emissions inventories. Our selection of the VPRM in partic-
ular is based on results from Dayalu et al. (2018a), where the
VPRM was shown to have significantly lower regional bias
than an ensemble of global 3-hourly flux products subset over
China.

3.4 Background concentrations

Appropriate quantification of background CO2 concentra-
tions (i.e., the CO2 concentration at the lateral edges of
the model domain and/or prior to interaction with do-
main surface processes) enables realistic assessment of the
study domain’s contribution to atmospheric CO2 at vary-
ing timescales. CT2015 estimates of CO2 concentrations are
provided on a 3◦× 2◦ grid at upwind background locations.
Background values are selected and corrected for large-scale
biases using methodology similar to Karion et al. (2016)
where a particle must originate from the outermost domain
edge and/or 3000 ma.s.l.; further details are provided in
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Sect. S4. The predicted background CO2 is shown in Fig. 3a
together with observed CO2 at Miyun for the 11:00–16:00 LT
period over the 5-year observational record. For most of the
year the measured CO2 shows large enhancements above
background and only in midsummer is there a small deple-
tion relative to background values.

3.5 Quantifying regional changes to background CO2
concentrations: 1CO2

We define hourly 1CO2 as a regional change (enhancement
or depletion) imparted to concentrations of CO2 advected
from the boundary (CO2,CT2015) such that, for each obser-
vation hour 1CO2,obs,

1CO2,obs = CO2,obs−CO2,CT2015. (1)

For each modeled hour 1CO2,mod, i and j represent the sur-
face grid cell locations and h represents the hour of the 7 d
back trajectory:

1CO2,mod =

−168 h∑
0 h

∑
ij

footij × (ANTHij +VPRMij ). (2)

Note that for the modeled enhancement or depletion, only the
VPRM fluxes change hourly; as stated previously, the annual
anthropogenic fluxes are atemporal.

Without a sufficiently dense network of high-temporal-
resolution observations, a full-scale inverse modeling ap-
proach to inventory scaling is inappropriate. At annual
timescales, where anthropogenic sources dominate the CO2
signal, we compare annual observed and modeled 1CO2 to
define a mean bias and derive a scale factor to quantify the
model–observation mismatch based on the slope of the com-
parison. Isotopic analysis of atmospheric CO2 from a site in
Beijing in 2014 suggests that annually the fossil fuel burn-
ing does dominate the region, contributing 75 %± 15 % to
the annual signal (Niu et al., 2016). Annually, the biospheric
impact in the region is not zero; rather, the anthropogenic sig-
nal dominates. The biospheric quantity of relevance annually
is the net carbon flux as a balance of GPP and respiration
and is highly uncertain in both sign and magnitude in this
region (Piao et al., 2009). In the Piao et al. (2009) study, re-
gional inversions are based on the very limited dataset of nine
sites across all of Asia. Our assumption of dominant anthro-
pogenic influence in northern China is in keeping with the
priors and process-based models from the relevant regions in
Piao et al. (2009) that assume zero and are not significantly
corrected by relatively poorly constrained inversions. At sea-
sonal timescales, we use the difference between observed and
modeled 1CO2 normalized by L_0.90 area to obtain a mass
flux offset that combines vegetation and anthropogenic in-
ventories. With the available data it is not possible to inde-
pendently evaluate both the anthropogenic and biogenic CO2
fluxes. For further details of the scaling technique, please re-
fer to Sect. S5.

Uncertainty analysis

The sources of uncertainty in calculations of 1CO2 include
uncertainty in CT2015 background concentrations, CO2 ob-
servations, STILT footprints, anthropogenic inventories, and
the biogenic CO2 fluxes from the VPRM. We obtain 95 %
confidence bounds for 1CO2 by following a procedure sim-
ilar to McKain et al. (2015) and Sargent et al. (2018) that in-
volves bootstrapping daily averages of hourly afternoon val-
ues. For monthly and seasonal timescales, we obtain 95 %
confidence intervals for 1CO2,obs by performing a bootstrap
on probability distributions of errors in both the CT2015 and
observations 1000 times. (See Sect. S4 and Fig. S9 for details
on parameterizing CT2015 uncertainty.) The relevant quan-
tiles are obtained from the resulting distribution, and are re-
ported relative to the mean1CO2,obs of the original data sub-
set. We follow a slightly modified approach for 1CO2,mod
in that we construct monthly and seasonal residual pools
from daily averages of hourly afternoon CO2,mod−CO2,obs.
The residuals – the deviation of the model from the true ob-
served values – represent the total uncertainty in the model
and therefore aggregate the effects of uncertainty in the foot-
prints, background, and inventories. Monthly and seasonal
95 % confidence intervals of CO2,mod−CO2,obs are then ob-
tained from the distribution of bootstrapping the residual
pools 1000 times. We then obtain the mean and 95 % con-
fidence interval of 1CO2,mod by applying the relevant quan-
tiles of the residuals to the mean 1CO2,obs of the original
data subset. Similar to Sargent et al. (2018) and McKain
et al. (2015), distributions of seasonal averages obtained from
the above method are used to estimate annual averages and
95 % confidence intervals.

Sargent et al. (2018) note that applying the same mete-
orological model over a long time period (15 months) al-
lows for detection of trends in transport uncertainty. In this
study, the drawback of a single location is offset somewhat
by a much longer time series (60 months). Absent a dense
network of observations, a more sophisticated and extensive
error analysis cannot be conducted with meaningful results.
Turnbull et al. (2011) faced a similar issue, where weekly
flask data collected between 2004 and 2010 from two sites
in the NOAA ESRL/WMO sampling network were used to
evaluate a bottom-up fossil inventory based on CDIAC and
EDGAR estimates. Turnbull et al. (2011) noted the difficulty
in assessing the transport error given the paucity of regional
observations but also demonstrate the power of top-down as-
sessments given improvements in regional transport model-
ing and density of observations.
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Figure 3. Hourly (11:00 to 16:00 LT) modeled and measured CO2 and 1CO2. Measured CO2 and modeled CT2015 background concen-
trations are displayed in (a). Modeled versus measured 1CO2 for each anthropogenic inventory is shown in (b)–(d), colored by season.
Histograms of modeled and measured residuals are shown in (e)–(g). The VPRM vegetation component is included in all modeled 1CO2
values.

4 Results and discussion

4.1 Impact of seasonality on evaluation region

As shown in Fig. 2, we find strong seasonality in the foot-
print percentile contours, in agreement with previous anal-
ysis of Miyun observations by Wang et al. (2010). At an-
nual timescales, the L_0.90 region is comparable to the WRF
d02 extent. Northern China, including Inner Mongolia, dom-
inates the L_0.90 region both seasonally and annually. Due
to the heavy biosphere influence in the regional growing sea-
son, previous work by Wang et al. (2010) used Miyun non-
growing-season measurements of CO2 and carbon monoxide
(CO) as an anthropogenic tracer to estimate combustion effi-
ciency for China. When compared to bottom-up estimates of
national combustion efficiency, observations suggested 25 %
higher combustion efficiency than bottom-up estimates of na-
tional combustion efficiency; however, Wang et al. (2010)
note that the regional (northern China) and seasonal (win-
ter) subsets could contribute to such a discrepancy. The sea-
sonality exhibited in Fig. 2 indeed suggests that combustion

efficiency estimates derived from non-growing-season mea-
surements alone do not represent anthropogenic processes in
provinces south of Miyun that are visible in the observations
primarily during the growing season. Low-emitting regions
northwest of Miyun such as Inner Mongolia influence the
site more in the fall and winter relative to other seasons. In
the spring and summer, higher-emitting regions in provinces
south of Miyun are more influential. However, non-growing-
season CO2 is influenced by often inefficient district heat-
ing in the northwest. And, while growing-season CO2 is in-
fluenced by intense urban activities from Beijing and other
cities to the south, vegetation draws down both background
and locally observed CO2 significantly (Fig. 3a).

4.2 Unscaled models: performance at multiple
timescales

We evaluate unscaled model performance relative to obser-
vations at hourly, seasonal, and annual timescales. While
inventory scaling is performed at the policy-relevant scales
of seasons and years, examination of the models at shorter
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Table 1. Quantification of model–observation mismatch at hourly timescales averaged over 2005–2009 and pooled by season (W=winter;
Sp= spring; Su= summer; F= fall). We provide standard major axis (SMA) slopes and 95 % confidence intervals, R2 quantities (those> 0.2
are in bold), and mean bias and root mean square error (RMSE) in ppm.

SMA slope (95 % CI)

All W (JFM) Sp (AMJ) Su (JAS) F (OND)

1CO2,ZHAO+VPRM 0.89 (0.88,0.91) 1.0 (1.0,1.1) 0.74 (0.72,0.77) 0.88 (0.84,0.92) 0.92 (0.90,0.95)
1CO2,EDGAR+VPRM 0.77 (0.76, 0.78) 0.83 (0.81, 0.86) 0.62 (0.60, 0.65) 0.83 (0.80, 0.87) 0.77 (0.74, 0.79)
1CO2,CDIAC+VPRM 0.63 (0.62, 0.64) 0.63 (0.62, 0.65) 0.48 (0.46, 0.50) 0.79 (0.75, 0.82) 0.56 (0.54, 0.58)

R2

All W (JFM) Sp (AMJ) Su (JAS) F (OND)

1CO2,ZHAO+VPRM 0.49 0.56 0.26 0.22 0.56
1CO2,EDGAR+VPRM 0.47 0.55 0.21 0.18 0.55
1CO2,CDIAC+VPRM 0.43 0.55 0.17 0.13 0.54

Mean bias (RMSE), ppm

All W (JFM) Sp (AMJ) Su (JAS) F (OND)

1CO2,ZHAO+VPRM 0.32 (9.2) 0.014 (7.9) −0.033 (8.3) 3.1 (11) −1.1 (9.7)
1CO2,EDGAR+VPRM −2.0 (9.3) −2.2 (7.7) −1.9 (8.7) 0.25 (10.8) −3.4 (10.1)
1CO2,CDIAC+VPRM −3.3 (9.9) −3.1 (8.1) −3.3 (9.2) −1.1 (11.3) −5.0 (11.1)

timescales provides insight into model bias and error ag-
gregation at longer timescales. Table 1 summarizes hourly
model bias across all years and pooled by season.

All modeled hourly quantities include the same biolog-
ical component from VPRM, background concentrations,
and transport models such that the only source of varia-
tion among models is the anthropogenic inventory. With
a few exceptions that are discussed in the following sections,
CO2,EDGAR+VPRM, CO2,CDIAC+VPRM, 1CO2,EDGAR+VPRM,
and 1CO2,CDIAC+VPRM systematically underestimate obser-
vations, as indicated by larger deviation below the 1 : 1 line
in the comparison of modeled to measured 1CO2 (Table 1,
Fig. 3b–d.)

4.2.1 Hourly

We examine the distribution of modeled-measured residuals
at hourly timescales for each anthropogenic inventory. While
standard deviations are consistent across all models of CO2
flux (1σ = 9 ppm; Fig. 3e–g) 1CO2,ZHAO+VPRM exhibits
the least bias relative to observations with a mean residual
of 0.32(0.12,0.53) ppm. In contrast, 1CO2,EDGAR+VPRM
and 1CO2,CDIAC+VPRM display significantly greater bias
by typically underestimating observations by large amounts:
−2.0(−1.8,−2.2) ppm and −3.3(−3.1,−3.5) ppm, respec-
tively. Here, the 95 % confidence intervals are derived from
a two-sample t test. The EDGAR and CDIAC underestima-
tion of 1CO2 at the hourly scale is consistent across longer
timescales of seasons and years, as discussed in the following
sections, but we note where there are likely aliased effects of
the uncertainty in the VPRM biogenic component.

4.2.2 Seasonal

The seasonally averaged modeled and measured 1CO2 val-
ues shown in Fig. 4 illustrate the overall biases for the four
inventories. Outside of June, July, August, and September,
the anthropogenic signal dominates in northern China (Wang
et al., 2010). We see from Table 1 that during seasons where
biological activity is lower or significantly lower than anthro-
pogenic activity, there is a consistent discrepancy among the
CO2 modeled by the three different anthropogenic invento-
ries suggesting systematic differences largely attributable to
the anthropogenic component (as we do not vary any other
component). In the fall, where respiration is the dominant
biological process, all three modeled quantities are consis-
tently lower than observations – a likely a consequence of the
known underestimate of ecosystem respiration by the VPRM
(Dayalu et al., 2018a). Even so, China’s significant anthro-
pogenic component still dominates during these months.
During the winter season, where all biospheric activity is at
a minimum, the model–observation mismatch is most reflec-
tive of biases among anthropogenic inventories rather than
aliased impacts from the VPRM. As shown in the winter
data in Table 1, ZHAO displays the least bias relative to ob-
servations (0.01 ppm), followed by EDGAR (−2.2 ppm) and
CDIAC (−3.1 ppm).

With the exception of the peak JAS growing season,
1CO2,EDGAR+VPRM and 1CO2,CDIAC+VPRM typically un-
derestimate 1CO2,OBS, even within the 95 % uncertainty
bounds. The VPRM has a limited calibration network that
contributes to an underestimate of regional CO2 drawdown
during the growing season (Dayalu et al., 2018a). Therefore,
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Figure 4. Modeled and measured seasonal 1CO2. CT2015 background is subtracted from observations to provide observed 1CO2 (black
line), and 95 % confidence bounds are derived from bootstrapping hourly afternoon concentrations for each season.

while 1CO2,ZHAO+VPRM agrees within 95 % confidence
bounds with 1CO2,OBS during the non-growing seasons,
1CO2,ZHAO+VPRM generally overestimates CO2 concentra-
tions in the growing season (Fig. 4a). 1CO2,EDGAR+VPRM
(Fig. 4b) and 1CO2,CDIAC+VPRM (Fig. 4c) display lower
CO2 concentrations and generally result in better agreement
with observations during the peak growing season than at
other times of the year; however, our wintertime and over-
all analysis at hourly timescales (Fig. 4, Table 1) suggests
this is an artifact of lower anthropogenic emissions esti-
mates relative to ZHAO that counteracts the VPRM un-
derestimating drawdown. Even during the growing season,
1CO2,CDIAC+VPRM agrees with observations typically at its
upper confidence limits. However, during times of the year
where the impacts of underestimated respiration become
more significant (e.g., Fall) it is possible that the seemingly
better agreement of ZHAO+VPRM is linked to a counter-
acting effect of overestimated anthropogenic emissions.

As ZHAO+VPRM demonstrates the least bias relative
to observations at hourly and seasonal scales, we model
the relative contributions to the monthly signal during the
May through September peak regional growing season as
defined by Wang et al. (2010). Figure 5 displays the results
from partitioning the mean monthly 1CO2,ZHAO+VPRM sig-
nal as a multi-year average into anthropogenic and vegetation
contributions. While the WRF-STILT-VPRM framework has
been successfully adapted for similar CO2 inventory evalua-
tion studies in North American regions where biogenic fluxes
dominate surface processes (Karion et al., 2016; Matross
et al., 2006), Fig. 5 shows the relative magnitude of biogenic
fluxes and anthropogenic emissions in the northern China re-
gion is comparable during peak summer, making it difficult
to independently constrain them with observational data. As

Figure 5. Modeled mean monthly contribution (ppm) to Miyun
CO2 concentrations from vegetation (VPRM) and anthropogenic
(ZHAO) sources. Enhancement and depletion are relative to ad-
vected CT2015 background concentrations during the regional
growing season (MJJAS), averaged over 2005 to 2009. Vertical lines
represent 1σ of monthly averages (green: vegetation; black: anthro-
pogenic). Negative values represent depletion from CT2015 back-
ground; positive values represent enhancement of CT2015 back-
ground.

noted in Sect. 3, the regional peak uptake during the grow-
ing season occurs with the onset of the corn growing season
around July and August. The atypical lower uptake during
June represents the winter wheat to corn transition period.
These results are consistent with the biological component
estimated by Turnbull et al. (2011). Furthermore, knowledge
of the relative contribution of vegetation and anthropogenic
processes to the CO2 signal during the peak growing season
is necessary to interpret satellite retrievals of CO2 over the
region (Dayalu et al., 2018a).
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4.2.3 Annual

Aggregation of uncertainty and anthropogenic inventory bi-
ases at shorter timescales becomes most apparent at the an-
nual timescales. For annual budgeting we follow the as-
sumptions of Piao et al. (2009) and Jiang et al. (2016) that
agricultural systems are in annual carbon balance because
crop biomass has a short residence time. In the absence of
data on regional transfer of agricultural products and pro-
portion of grains used in situ for livestock vs. human con-
sumption in China this is the most conservative assump-
tion to make. Given the dense population in most of Bei-
jing province we expect there may be net import of agri-
cultural products from outside the L_0.90 region, which
would show up as additional respiration not captured by
VPRM, but that term will be small relative to the anthro-
pogenic CO2 (Fig. 5) (Dayalu et al., 2018a). Therefore,
while the VPRM is implicitly included in the modeled an-
nual CO2 and 1CO2, vegetation carbon stocks (including
harvested products and crop residues) from the portions of
the L_0.90 region with widespread agriculture largely turn
over such that only the anthropogenic inventories dominate
the modeled CO2 signal. We evaluate annual CO2 includ-
ing CT2015 background (Fig. 6a–c) and as regional en-
hancement relative to background (Fig. 6d–f). We show that
for all years, CO2,ZHAO+VPRM and 1CO2,ZHAO+VPRM agree
tightly within 95 % uncertainty to observations (Fig. 6a and
d). EDGAR+VPRM and CDIAC+VPRM are consistently
biased significantly lower than observations.

4.3 Evaluation of inventories at seasonal and annual
timescales

We quantify model–observation mismatch by estimating the
additive flux corrections at seasonal timescales and multi-
plicative corrections at annual timescales. We emphasize that
these “corrections”, or scalings, are not optimizations; rather,
they simply reflect the extent to which the individual anthro-
pogenic+VPRM flux models deviate from the observations.
Complete seasonal and annual scaling results are provided in
Sect. S5 and Tables S2–S3.

The observational record informing the scaling integrates
the biological and anthropogenic signals. At the seasonal
scale, where biological processes are significant contribu-
tors to the signal, we scale the sum of the anthropogenic
and biological fluxes (Fig. 7). Scaled non-growing-season
flux estimates are higher than unscaled values, partially ac-
counting for the VPRM generally underestimating ecosys-
tem respiration by an additive offset throughout the year
(Dayalu et al., 2018a). The multi-year seasonal results in Ta-
ble 1 suggest that this offset can aggregate to a 1–2 ppm dif-
ference; the result would be a shift in baseline rather than
overall pattern for each of the three simulations. As the
vegetation and all other components are controlled across
models, the inter-model variance reflects the relative per-

Table 2. Annual scaling factors (95 % CI) and corresponding cor-
rected emissions for the L_0.90 inventory evaluation region.

Scaling factor Corrected emissions, Original
(95 % CI) MtCO2 (95 % CI) emissions,

MtCO2

2005 ZHAO 0.95 (0.84, 1.0) 2800 (2476, 3105) 3015
EDGAR 1.4 (1.3, 1.6) 3306 (2886, 3683) 2322
CDIAC 1.7 (1.5, 1.9) 3489 (3017, 3871) 1930

2006 ZHAO 1.0 (0.91, 1.1) 3326 (2972, 3631) 3273
EDGAR 1.5 (1.3, 1.6) 3751 (3325, 4150) 2586
CDIAC 1.9 (1.6, 2.0) 3930 (3438, 4338) 2160

2007 ZHAO 0.94 (0.85, 1.0) 3080 (2789, 3324) 3588
EDGAR 1.4 (1.2, 1.5) 3454 (3096, 3785) 2799
CDIAC 1.6 (1.5, 1.8) 3180 (2842, 3493) 2260

2008 ZHAO 0.94 (0.82, 1.0) 3422 (3008, 3768) 3685
EDGAR 1.2 (1.1, 1.4) 3790 (3332, 4207) 3095
CDIAC 1.7 (1.5, 1.9) 3941 (3461, 4374) 2395

2009 ZHAO 0.96 (0.86, 1.1) 3860 (3474, 4251) 3974
EDGAR 1.1 (1.0, 1.3) 3518 (3133, 3874) 3298
CDIAC 1.5 (1.3, 1.7) 3921 (3454, 4330) 2543

formance of the anthropogenic estimates. We find that in
the non-growing months the original ZHAO+VPRM inven-
tory typically remains within the 95 % confidence bounds of
the scaled inventory. However, both EDGAR+VPRM and
CDIAC+VPRM are consistently significantly lower than
their scaled counterparts. At least in the winter, where bio-
genic processes are at a minimum, this suggests that both
EDGAR and CDIAC underestimate anthropogenic emis-
sions, and that ZHAO estimates are closer to actual emis-
sions. Improved representation of temporal anthropogenic
activity factors and biosphere processes are needed to extend
the conclusions of anthropogenic inventory performance to
all seasons. In the absence of such data, it is not possi-
ble to conclusively state whether model–data mismatch is
rooted in anthropogenic emissions biases or biogenic biases.
During the growing seasons, however, the afternoon vegeta-
tion signal is significant, and the picture is more complex.
In the spring, the CO2 signal at Miyun is significantly af-
fected by the North China Plain winter wheat growing sea-
son. The effect of scaling in the spring from 2005 to 2007
is to increase CO2 emissions with a net positive seasonal
flux; however, in 2008 and 2009 we find the net seasonal
flux becomes negative such that uptake dominates emissions.
The prior models in all cases predict positive flux. During
the summer months, ZHAO+VPRM predicts more emis-
sions and/or less uptake relative to EDGAR+VPRM and
CDIAC+VPRM. Scaling of summertime fluxes serves to
significantly increase ZHAO+VPRM uptake estimates; the
EDGAR+VPRM and CDIAC+VPRM prior estimates are
within the 95 % confidence bounds of the scaling for reasons
discussed previously.

We report annual scaled anthropogenic inventories in the
L_0.90 region in Fig. 8 and Table 2 as MtCO2 yr−1. As dis-
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Figure 6. Mean annual CO2 and 1CO2 over the entire study time period. (a–c) CO2 annual concentration; (d–f) 1CO2 (regional enhance-
ment, after removal of advected CT2015 background) with bootstrapped 95 % confidence intervals.

cussed previously, the annual scalings are applied only to the
anthropogenic inventory, as the signal at the annual timescale
is effectively dominated by anthropogenic emissions; net
ecosystem fluxes are expected to be relatively minor in the
L_0.90 region in comparison. For all years, the emissions es-
timated by the original ZHAO inventory lie within the 95 %
confidence bounds of the scaled ZHAO inventory. However,
for EDGAR and CDIAC, the original inventories consis-
tently underestimate observations. Averaged over the 5-year
study period, EDGAR and CDIAC lead to modeled estimates
of CO2 mixing ratios that are typically lower than obser-
vations by 30 % and 70 % respectively (Fig. 6). Averaged
across the 5 years, this translates to EDGAR and CDIAC
being scaled relative to their unscaled values in the L_0.90
region by 1.3 and 1.7, respectively (Fig. 8; Table 2). In the
case of EDGAR, we note a general increase in observational
agreement from 2005 to 2009.

4.4 Potential contributions to regional carbon
emissions patterns from 2005 to 2009

We examine the statistical significance of the inter-annual
observed concentration and enhancement differences using
a two-sample t test (Table 3). The observed concentrations
including advected global background (Fig. 6a–c) display an
overall increasing trend of 1.87 (1.8, 1.9) ppm CO2 yr−1 be-
tween 2005 and 2009, in agreement with flask samples ob-
tained from nearby WMO sites between 2007 and 2010 (Liu
et al., 2015). The inter-annual increases are statistically sig-
nificant (Table 3). However, when we remove the modeled
background to more closely examine regional patterns that
would otherwise be drowned out by the global signal, we find
that the regional 1CO2 trend (Fig. 6d–f; Table 3) does not
parallel the increasing global CO2 trend (Fig. 6a–c; Table 3).

Regionally, the observed enhancements increase from 2005
to 2006 and plateau in 2007 before decreasing in 2008. Re-
gional1CO2 increases again in 2009. Earlier work by Wang
et al. (2010) extended the Miyun observations of CO2 growth
rate to all of China and estimates a lower CO2 growth rate
than previously suggested. However, Fig. S6 suggests local
reductions in regions influencing Miyun, possibly in prepa-
ration for the Beijing Olympics, are partially offset by in-
creases elsewhere. A larger network of sites would be needed
to quantify this further in order to evaluate the CO2 growth
rate for other regions in China and for China as a whole.

In Fig. 9a we estimate gross regional product (GRP) for
8 of China’s 34 provincial-level administrative units, specifi-
cally those encompassed significantly by the L_0.90 region:
Beijing, Tianjin, Henan, Shanxi, Shandong, Hebei, Inner
Mongolia, and Liaoning. Using data from the International
Monetary Fund (IMF; https://www.imf.org/en/Data, last ac-
cess: 9 February 2020) and World Bank (World Bank, 2017)
we retrieved the GDP for each of the above provinces and
summed them to estimate the GRP. GDP calculations are in-
herently uncertain and were available as single values for
each province per year. A more extensive economic analy-
sis to estimate the uncertainty of these values is beyond the
scope of this study. Key economic events occurred during the
study time period and are likely contributors to the observed
interannual variation in regional CO2 emissions (Fig. 6d–e)
and a doubling of GRP from 2005 to 2009 (Fig. 9a). In partic-
ular, the time period from 2005 to 2009 saw industrial energy
efficiency improvements which began in 2007 under the 11th
FYP, preparations for and staging of the 2008 Beijing Sum-
mer Olympics, the global financial crisis in late 2008, and
a large Chinese fiscal stimulus in 2009. We further note that
the global financial crisis of 2008 correlates with a plateau-
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Figure 7. Scaled seasonal fluxes in the L_0.90 region (kgCO2 m−2 per month). Anthropogenic and vegetation inventories are scaled together
([ANTH+VPRM_COR]). The black and yellow dashed line is the seasonal flux estimated by the original ANTH+VPRM model. All models
have the same vegetation component (VPRM) and differ only in the anthropogenic inventory source. Shaded green represents negative flux
(uptake by biosphere). The scaling based on additive corrections; the difference among scaled inventories is due to differing spatial allocations
by anthropogenic inventories. Bootstrapped 95 % confidence intervals are represented by the black vertical lines.

ing of the percentage contribution of northern China GRP to
national GDP (Fig. 9a).

As policy targets are often measured as relative changes
over multiple years, an important component of emis-
sions inventories is their ability to accurately capture multi-
year changes. Observations indicate enhancements above
background CO2 increased by 28 % (22 %, 34 %) between
2005 and 2009. ZHAO+VPRM estimates a 20 % increase
over the same time period while EDGAR+VPRM and
CDIAC+VPRM estimate 61 % and 56 % increases respec-
tively.

Table 3. Inter-annual observed CO2 and 1CO2 differences. Dif-
ferences are of observations between consecutive years. The 95 %
confidence intervals are derived from a two-sample t test. Italicized
entries denote instances where the inter-annual difference is not sta-
tistically significant (confidence interval includes zero).

Time interval CO2,OBS (ppm) 1CO2,OBS (ppm)
(y2–y1) mean difference mean difference

(95 % CI) (95 % CI)

2006–2005 4.86 (4.5, 5.2) 2.08 (1.9, 2.3)
2007–2006 1.08 (0.69, 1.5) 0.0693 (−0.15, 0.29)
2008–2007 0.772 (0.37, 1.2) −1.43 (−1.6, −1.2)
2009–2008 2.60 (2.2, 3.0) 1.12 (0.88, 1.4)
2009–2005 9.31 (8.9, 9.7) 1.84 (1.6, 2.0)
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Figure 8. Annually scaled emissions in the L_0.90 region. Scaling
is based on multiplicative scaling factors. Difference among scaled
inventory means is due to differing spatial allocations in original
anthropogenic inventories. Bootstrapped 95 % confidence intervals
are represented by the black vertical lines. ∗ Note the y axis origin
begins at 1000 Mt CO2 for visual clarity.

4.5 Implications for assessing national carbon emission
targets

China has pledged a 60 %–65 % reduction in carbon intensity
by 2030 and has additionally set a benchmark of 40 %–45 %
reduction in carbon intensity by 2020, where both targets
are relative to the baseline year 2005 (NDRC, 2015; Guan
et al., 2014). However, Guan et al. (2014) found that provin-
cial trends in carbon intensity can vary significantly from na-
tional trends. Using the GRP values shown in Fig. 9a, we
calculate a northern China regional carbon intensity incorpo-
rating the eight provinces encompassed significantly by the
L_0.90 region (Fig. 9c). We also estimate an L_0.90 regional
carbon intensity based on the official national energy-related
CO2 emissions in NDRC (2015); we scale the national to-
tal by 39 % (35 %, 42 %), which is the mean (range) con-
tribution of the L_0.90 region to the national emissions in
2005, averaged across the three unscaled gridded emissions
inventories. We emphasize that carbon intensity values are
inherently uncertain due to complexities in GRP and GDP
calculations such as double-counting due to inter-provincial
trade or spatial mismatch between emissions and economic
data. Nevertheless, the analysis provides valuable insight into
trends rather than precise values.

Over the study time period, the GRP of the L_0.90 region
more than doubled (Fig. 9a), exhibiting a moderate, positive
correlation with the increasing trend in emissions (Fig. 9b).
Coinciding with the 2008 Beijing Summer Olympics, the
region’s contribution to China’s GDP grew from approxi-
mately 13.5 % in 2007 to nearly 16 % in 2008, representing
a 20 % increase, before plateauing into 2009 (Fig. 9a). As
noted in Guan et al. (2014), reductions in carbon emissions
intensity can come about via two main pathways: the first,
within industries, through increased energy efficiency com-
bined with expanded production capacity; the second, across
the economy, through structural shifts from energy-intensive

industrial sectors to service sectors. The doubling of GRP
with the apparent reduction in regional carbon intensity sug-
gests a combination of enlarged production capacity (includ-
ing production of higher valued goods) and a shift toward
a service-oriented economy. In the former instance, a larger
production capacity tends to reduce the overall energy (and,
therefore, carbon) consumption of a single production unit.
In the latter instance, the energy consumption by the service
sector is considerably lower than that required by industrial
and manufacturing processes. In the northern China region,
however, industry continues to dominate the economy, sug-
gesting that carbon intensity reductions are more due to en-
larged production capacity. From 2005 to 2009, carbon inten-
sity for the L_0.90 region decreased by 47 % (28 %, 65 %),
based on a one-sample t test of pooled emissions intensity
changes across scaled inventories. Analysis presented by or-
ganizations such as the World Bank (World Bank, 2017) sug-
gests China’s carbon intensity at the national level decreased
by 20 % in 2009 relative to 2005. However, we note that
the carbon emissions data source for the World Bank car-
bon intensity calculations is CDIAC. We have shown that at
least for the L_0.90 region, CDIAC emissions lead to sig-
nificant underestimates of observations. Our work here sug-
gests that carbon accounting organizations such as the World
Bank would benefit from basing their national estimates for
China on a variety of inventories, incorporating increasingly
available China-specific approaches (including but not lim-
ited to MEIC and PKU), EDGAR, and newer global invento-
ries such as ODIAC. However, we emphasize a crucial point
with respect to the value of carbon intensity targets, in agree-
ment with Guan et al. (2014): carbon intensity targets are es-
pecially misleading in developing countries where absolute
emissions continue to significantly grow in concert with eco-
nomic development goals. We see that despite the decreasing
carbon intensity of the region, pooled emissions estimates
from the three scaled inventories suggest an 18 % increase in
absolute emissions from 2005 to 2009 (Table 2, Fig. 9b). In
terms of the climate impact, it is the absolute carbon emis-
sions rather than the carbon intensity that ultimately matters.

5 Conclusions

Continuous hourly CO2 observations, significantly influ-
enced by the heavily CO2-emitting northern China region,
are used in a top-down evaluation and scaling of three
bottom-up CO2 flux inventories. We focus on the policy-
relevant time interval from 2005 to 2009, noting that 2005 is
China’s baseline year for carbon commitments. The three in-
ventories are distinct in their anthropogenic component, with
a common biogenic flux component provided by the VPRM,
a simple satellite data-driven biosphere model calibrated
with ground-level ecosystem observations. The ZHAO an-
thropogenic emissions inventory incorporates a regional ap-
proach to China’s CO2 emissions estimation, using activity
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Figure 9. Estimates of regional carbon intensity (kg of CO2 per USD). (a) PPP GRP by year and as a percentage of China’s national GDP.
No PPP GRP values were available for 2006 and 2007; PPP GRP for these years was derived from a linearly interpolated ratio of nominal
GRP/PPP GRP for 2005, 2008, and 2009. (b) Correlating corrected regional emissions from Table 2 with PPP GRP; values are pooled
annual means among ZHAO, EDGAR, and CDIAC with 1σ error bars. (c) Regional carbon intensity using scaled (solid) and unscaled (grey)
CO2 estimates. Error bars are bootstrapped 95 % confidence intervals. GRP and GDP data are from the IMF and World Bank. Provinces
used in GRP calculation are those significantly encompassed by the L_0.90 region: Beijing, Henan, Shanxi, Tianjin, Shandong, Hebei, Inner
Mongolia, and Liaoning. ∗ Estimated by scaling the official national emissions total by the average contribution (39 %) of the L_0.90 region
to total emissions in 2005. Uncertainty bars represent the percentage contribution range estimated by ZHAO, EDGAR, and CDIAC in 2005
(35 %, 42 %).

data at the provincial and facility levels as well as domestic
emission factors. The EDGAR and CDIAC emissions inven-
tories incorporate a greater reliance on global averages and
China’s national statistics and international default emission
factors and depend more heavily on proxies (e.g., popula-
tion) to allocate the emissions geographically. The three an-
thropogenic inventories represent a range of methods used to
estimate emissions for China.

The northern China administrative region, excluding Inner
Mongolia, dominates the L_0.90 region, which is the region
over which we distribute the model–observation mismatch
(Fig. 2). We find strong seasonality in the L_0.90 region; the

northwest features more strongly in the non-growing season
and there is a more symmetric influence in the growing sea-
son. Within the L_0.90 region, EDGAR and CDIAC are –
on average across the 5 study years – lower than ZHAO by
20 % and 36 %, respectively. Across administrative regions,
the highest discrepancy between the global and regional in-
ventories is in northern China, where the ZHAO inventory es-
timates emissions that are on average 30 % higher than both
EDGAR and CDIAC (Table S1).

We find the ZHAO+VPRM inventory generally agrees
very closely with observations, often significantly better than
the nationally referenced inventories at all timescales (hourly
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through annually), with the exception of the peak growing
season. During the peak growing season, the regional en-
hancement to background CO2 concentrations is modeled
as approximately zero, due to an agriculturally dominated
vegetation signal that is equal in magnitude and opposite in
sign to the anthropogenic signal (Dayalu et al., 2018a). While
this agrees with previous work by Turnbull et al. (2011), in
both that study and the present study the sparse data prevent
a more conclusive statement about anthropogenic inventory
performance during the regional growing season. At annual
timescales, the anthropogenic signal dominates, and we find
that emission rates from EDGAR and CDIAC lead to under-
estimated emissions in the northern China region by an aver-
age of 30 % and 70 %, respectively, averaged across all study
years. We note that the discrepancy between the EDGAR-
based time series and the observations generally decreases
over the 5-year study period. In contrast, emission rates from
the ZHAO inventory gives a priori results very close to ob-
servations throughout and is not significantly affected by the
scaling: the error bars for the scaled estimates consistently
include the original estimate. Note that the EDGAR and
CDIAC inventories can differ from −10 % to −20 % relative
to ZHAO in their national emissions totals (Table S1). The
inventories evaluated here exhibit distinct differences in their
ability to match observations. However, observational data
from a network of sites strategically located in and around
the eastern half of China would be required to (1) exam-
ine whether differences in spatial allocation approaches con-
tribute to differences among the inventories and (2) conduct
actual optimizations of the inventories.

We find that carbon intensity in the region has decreased
by 47 %(28 %, 65 %) from 2005 to 2009, from approximately
4 kg of CO2 per USD in 2005 to about 2 kg of CO2 per USD
in 2009 (Fig. 9c). However, we see that despite the decreas-
ing carbon intensity of the region, there is an 18 % increase
in absolute emissions over time, affirming the point made by
Guan et al. (2014) that meeting carbon intensity targets in
emerging economies can be at odds with making real climate
progress (Table 2, Fig. 9b).

Despite the limitations of having data from a single site,
this analysis demonstrates how a long time series of continu-
ous observations can identify apparent overall biases in some
inventories. Our results, while specific to northern China re-
gional emissions in particular, also provide some insight into
current methods of carbon emissions accounting for China
as a whole. We emphasize that this work is intended to be
a comparison of emission rates from a subset of anthro-
pogenic CO2 inventories over northern China that were read-
ily available at the time this research began and is not in-
tended to be an advocate or criticism of any single published
inventory. Rather, we use a long 60-month continuous obser-
vational record to examine model–data mismatch in an im-
portant carbon-emitting region where local data are difficult
to access and global datasets are forced to rely on the best
available public data, which are not necessarily accurate as-

sumptions of China-specific activity. Second, while we rec-
ognize the height limitations – and therefore the footprint
– of the Miyun receptor, its topographic advantage along
with the low-productivity vicinity makes it similar to other
short-tower sites suitable for regional analysis. In addition,
a detailed assessment of uncertainty stemming from errors
in transport, biogenic inventories, and inventory spatial al-
location remains a challenge. Independent verification from
concurrent aircraft measurements (for example) or multi-
level inlet locations were not available to quantify the im-
pact of absolute and relative inlet location on transport un-
certainty. Finally, we emphasize our implied seasonal and
annual “corrections”, or scalings, of modeled CO2 relative to
observations are not optimizations; rather, they simply reflect
the extent to which the individual anthropogenic+VPRM
CO2 flux models deviate from the observations. At least in
the winter, where biogenic processes are at a minimum, the
low bias of ZHAO-modeled CO2 concentrations suggests the
ZHAO inventory is closer to actual emissions. However, im-
proved representation of temporal anthropogenic activity fac-
tors and biosphere processes are needed to extend the conclu-
sions of anthropogenic inventory performance to all seasons.
Effectively evaluating and constraining inventory emissions
rates at relevant spatial scales requires multiple stations of
high-temporal-resolution observations, as well as improve-
ments and greater diversity in observationally constrained
biogenic flux models. In its current configuration, the sin-
gle biogenic flux model precludes a comprehensive multi-
seasonal and annual disentangling of contributions to CO2;
particularly in our annual scale analysis, we are ascribing
more uncertainty to the anthropogenic inventories over the
biogenic contributions. Absent data from a dense network
of ecosystem flux and atmospheric measurements, there will
constantly be a tradeoff between drawing conclusions using
low-temporal-resolution flask measurements from a few sites
and continuous data from a single location.

In situ CO2 observations interpreted within a high-
resolution model framework such as that described in this
study provide a powerful constraint to test and correct spa-
tially explicit inventories. The observation station available
for the 2005–2009 period was strategically located to pro-
vide information on one of the highest CO2-emitting regions
of China. Within the limitations described above, the obser-
vations provide strong evidence supporting the use of China-
specific methods, such as those employed in ZHAO, for
China’s CO2 emissions inventory derivation. In future, ac-
cess to a spatially dense network of measurements will allow
for a sophisticated error analysis that can more readily as-
sess uncertainty in key model components such as transport,
flux fields, and background concentrations. Along with the
results presented here, previous studies (e.g., Turnbull et al.,
2011) provide key information that is necessary to guide and
motivate more extensive future measurement and emissions
evaluation efforts. Such future efforts will benefit substan-
tially from incorporating newly available information from
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column-average CO2 concentrations acquired by orbiting in-
struments or ground-based spectrometers to increase obser-
vational coverage. A number of existing (OCO-2, OCO-3)
and planned satellite missions will significantly reduce the
observational gap in China, though surface observations pro-
vide additional constraints and a link to absolute calibration
scales. A denser network of CO2 measurement stations in
China is required as a component for effective monitoring,
reporting, and verification of regional and national invento-
ries. The results of this research present a necessary base-
line for a key CO2-emitting region of China. Our results have
broad implications for designing future analyses as more ob-
servations of China’s CO2 continue to become available, par-
ticularly in the era of increased CO2 satellite coverage. How-
ever, as the quality of satellite retrievals can be compromised
by factors such as aerosol loading, surface observations con-
tinue to be crucial for the region both in their own right and
as a key component of cross-platform evaluations.
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