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H I G H L I G H T S  

� NOX emissions were constrained with the “synthetic” and real satellite observation. 
� Influence of inversed approach on top-down estimates increased with finer resolution. 
� Selection of satellite product was of great influence on NOx emission constraining. 
� The model performance was largely improved with the optimized top-down estimates.  
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A B S T R A C T   

The top-down estimation of NOX emissions and their influencing factors were evaluated based on the “synthetic” 
and real satellite observation methods at different spatial scales in eastern China. Using the “synthetic” NO2 
vertical column densities (VCD) simulated from a hypothetical “true” emission inventory, the top-down estimates 
of NOX emissions for the Yangtze River Delta (YRD) region at 9 km resolution and the Southern Jiangsu City 
Cluster (SJC) at 3 km resolution were obtained using various inverse modeling approaches and the a priori 
emissions for January and July 2012. The normalized mean biases (NMBs) between the top-down and the hy-
pothetical “true” emissions for all the cases were smaller than 6%, which indicates that both linear and nonlinear 
approaches could effectively constrain the total amount of emissions, with limited influence from spatial reso-
lution, a priori emissions, and seasons. Larger differences for most cases were found for the normalized mean 
errors (NMEs), implying that the inverse modeling approach and other influencing factors played a more 
important role on the spatial distribution of the top-down estimates. Two NO2 VCD products from real satellite 
observation (Dutch OMI NO2 data product v2 (DOMINO v2) and Peking University OMI NO2 data product v2 
(POMINO v2)) were then applied to emissions constraints. The NMEs between the top-down estimates derived 
from the two products were calculated at 182% and 99% for January and July, respectively, indicating the great 
importance of satellite observation in constraining emissions. With the nonlinear inverse modeling approach, the 
top-down estimates of NOX emissions based on POMINO v2 were 25%–60% smaller than the national bottom-up 
inventory for the four seasons in the YRD, which indicates overestimation by the bottom-up method due to the 
insufficient consideration of recent air pollution control policy. At the 9 km resolution, the simulated NO2 
concentrations with air quality modeling based on the top-down estimates were much closer to available ground 
observation than the bottom-up ones for all seasons, which suggests improved emissions estimation from the 
inverse model at regional scales.   
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1. Introduction 

Nitrogen oxides (NOX ¼ NO2 þ NO) are important precursors of 
secondary inorganic aerosols (SIA) and O3. A NOX emission inventory is 
crucial to understand the atmospheric chemistry based on air quality 
modeling and is an important reference for formulating pollutant con-
trol measures. Emission inventories have been frequently developed 
using a bottom-up method, in which the emissions were calculated 
based on activity levels and emission factors by sector. For countries 
with large energy consumption and complicated source categories such 
as China, there are substantial biases in emission estimates with the 
bottom-up method, mainly attributed to the uncertainties of economy 

and energy statistics and those of emission factors due to insufficient 
field measurements (Granier et al., 2011; Ding et al., 2017; Zhao et al., 
2017; Saikawa et al., 2017; Zhang et al., 2019). To improve the esti-
mates, an inverse top-down method was developed to constrain the NOX 
emissions that combines the air quality model (AQM) and the 
satellite-derived troposphere vertical column density (VCD) of NO2 
(Kurokawa et al., 2009; de Foy et al., 2015; Zyrichidou et al., 2015; Kong 
et al., 2019). Among various instruments, including the Scanning Im-
aging Absorption Spectrometer for Atmospheric Chartography (SCIA-
MACHY), the Global Ozone Monitoring Experiment-2 (GOME-2) and the 
Ozone Monitoring Instrument (OMI), NO2 VCDs from OMI were pref-
erentially applied in constraining NOX emissions attributed to its higher 

Fig. 1. Model domain and locations of meteorological and pollutant’s monitoring sites.  
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temporal and spatial resolution (Jena et al., 2014; Zhao et al., 2018). 
Within mainland China, different OMI products were available 
including the Dutch OMI NO2 data product v2 (DOMINO v2: Boersma 
et al., 2007; Boersma et al., 2011) and the Peking University OMI NO2 
data product v2 (POMINO v2: Lin et al., 2014; Lin et al., 2015; Liu et al., 
2019). 

There have been uncertainties in the top-down methods, and the top- 
down estimates of NOX emissions could be influenced by various factors 
including spatial resolution, a priori emissions, and satellite data (Lin 
et al., 2010; Cooper et al., 2017). For example, the difference of 
top-down NOX emissions in East Asia could reach 40% according to 
various studies (Ding et al., 2017). The error of top-down estimates 
increased by 82% when the spatial resolution was improved from 5�

lat � 4� lon to lat 2.5� � lon 4� at the global scale (Cooper et al., 2017). 
The differences of top-down NOX emissions from various a priori emis-
sions and satellite observation have been estimated at 14% in East Asia 
and 16–32% in China, respectively (Zhao and Wang, 2009; Gu et al., 
2014). To better understand and improve the reliability of the top-down 
methodology, the inverse studies on NOX emissions should be carefully 
evaluated and the influencing factors should be identified. At present 
there are two types of methods for evaluation of the top-down estima-
tion of NOX emissions. The first method was developed to examine the 
principle of the inverse top-down methodology (Cooper et al., 2017). 
The method assumed a bottom-up emission inventory as the hypothet-
ical “true” inventory and the simulated NO2 VCDs based on this in-
ventory were determined as the “synthetic” satellite-derived NO2 VCD. 
The NOX emissions were then estimated with the inverse top-down 
method and compared with the hypothetical true inventory. The sec-
ond method applied the real satellite observation, and the top-down 
estimates of NOX emissions were assessed by comparing the simulated 
NO2 concentrations with the AQM and those from ground observation 
(Liu et al., 2018a). In both methods, sensitivity analysis was commonly 
conducted to quantify the influences of various factors on the top-down 
estimates of NOX emissions (Gu et al., 2014; Cooper et al., 2017). Very 
few studies, however, have applied the two methods simultaneously, 
and a comprehensive understanding of the rationality and the factors 
that influence the top-down estimation of NOX emissions remains lack-
ing, particularly for China with fast changes in energy use and emission 
control actions. In addition, current studies are usually conducted with 
relatively coarse horizontal spatial resolutions at the global (e.g., 2.5�

lat � 4� lon) or the national scale (e.g., 70 � 70 km2). In China, the 
policies of air pollution control are commonly implemented at the city 
level, and the inverse estimates and their evaluation with finer spatial 
resolution are thus greatly needed to improve the knowledge of emis-
sions patterns and to detect the effectiveness of air pollution control at 
regional scales. 

Located in eastern China, the Yangtze River Delta (YRD) region, 
including the city of Shanghai and the provinces of Anhui, Jiangsu and 
Zhejiang is one of the most developed regions and a hotspot of NOX 
emissions in the country (Li et al., 2017). With intensive industry and 
fossil fuel consumption, the southern Jiangsu cluster (SJC), which in-
cludes the cities of Suzhou, Wuxi, Changzhou, Zhenjiang and Nanjing is 
a typical region in the YRD greatly concerned with air quality 
improvement (Zhao et al., 2019). In this study, we chose the YRD and 
the SJC regions to evaluate the top-down estimates of NOX emissions 
and the factors that influence inverse modeling. Fig. 1 indicates the 
location and cities of the YRD region. Based on the “synthetic” satellite 
observation, we obtained and evaluated the top-down estimates for the 
YRD and the SJC at the resolutions of 9 and 3 km respectively, for 
January and July 2012. Different cases were set to explore the influence 
of inverse modeling, spatial resolution and a priori emissions on the 
top-down estimates. With the same options of season and spatial reso-
lution, we then explored the factors that influence top-down estimates 
for YRD and SJC based on the real satellite observation. Model perfor-
mance with the top-down estimates was further evaluated based on 
available ground observations. Finally, the top-down estimates of NOx 

emissions for January, April, July and October 2012 were developed 
with the optimized inverse modeling option, and the improvements 
against the bottom-up inventory were evaluated via the AQM and 
ground observations. 

2. Data and methods 

2.1. Evaluation of constrained emissions and influencing factors 

Two methods, based on synthetic and real satellite observations (SSO 
and RSO respectively), were applied to evaluate the top-down estimates 
of NOX emissions and to identify the influencing factors. SSO applies the 
“synthetic” VCDs simulated from a hypothetical “true” inventory to 
constrain and correct the a priori emissions. Ideally, the top-down and 
the hypothetical “true” emissions should be very close to each other. The 
reliability and the robustness of the inverse modeling can then be 
evaluated by comparing’ the hypothetical “true” and the derived top- 
down estimates. The difference between the two estimates could pro-
vide the uncertainty information of the method in an indirect way. 
Table 1 summarizes the settings of different cases using the SSO method. 
Two spatial scales, the YRD region with a 9 km resolution and the SJC 
region with a 3 km resolution were included in the analysis, and January 
and July were selected to represent different seasons. In addition, the 
nonlinear and linear approaches (described in Section 2.3) were sepa-
rately applied to examine the influence of inverse modeling on emission 
estimates. 

The Multi Resolution Emission Inventory for China 2012 (MEIC, 
http://www.meicmodel.org/) with an original spatial resolution of 
0.1� � 0.1� was applied as the hypothetic “true” inventory for YRD re-
gion. A local inventory was compiled for Jiangsu by Zhou et al. (2017) 
with more detailed information on individual emission sources incor-
porated (JSEI, http://www.airqualitynju.com/), and was applied as the 
hypothetical “true” inventory for the SJC region. To evaluate the in-
fluence of the a priori emissions and spatial resolution, various in-
ventories were applied in different cases: MEIC 2015 and MEIC 2012 
were used as the a priori emissions for the YRD (Cases 1–4 in Table 1) 
and the SJC region (Cases 5–8 in Table 1), respectively. Moreover, in 
Cases 9–10 the a priori emissions were determined by doubling the total 
amount of the “true” inventory while keeping the emissions of each grid 
cell within the research domain at the same level (i.e., no spatial 

Table 1 
The information of cases based on synthetic satellite observation (SSO).   

The a priori 
emissions 

The “true” 
emissions 

Method Month Resolution 

Case1 MEIC for 2015 MEIC for 
2012 

Linear January 9 km 

Case2 MEIC for 2015 MEIC for 
2012 

Nonlinear January 9 km 

Case3 MEIC for 2015 MEIC for 
2012 

Linear July 9 km 

Case4 MEIC for 2015 MEIC for 
2012 

Nonlinear July 9 km 

Case5 MEIC for 2012 JSEI for 
2012 

Linear January 3 km 

Case6 MEIC for 2012 JSEI for 
2012 

Nonlinear January 3 km 

Case7 MEIC for 2012 JSEI for 
2012 

Linear July 3 km 

Case8 MEIC for 2012 JSEI for 
2012 

Nonlinear July 3 km 

Case9 The modified 
“true” 
emissions 

MEIC for 
2012 

Nonlinear January 9 km 

Case10 The modified 
“true” 
emissions 

JSEI for 
2012 

Nonlinear January 3 km 

Note: The NOX emissions displayed in the table do not cover those from lighting 
and soil, and the emissions from the two sources are described in Section 2.4. 
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difference was assumed). The differences between the a priori and hy-
pothetical “true” emission inventories are shown in Table S1 in the 
supplement. As seen in the table, the relative difference between the a 
priori and the “true” inventory was close for the YRD and the SJC for 
Cases 9–10, and the net influences of spatial resolution could thus be 
effectively evaluated. 

To evaluate the error of top-down emissions estimation, the NMBs 
and NMEs between the top-down estimates and the hypothetical true 
emissions were used to evaluate the inverse approach, calculated with 
the following equations: 

NMB¼
Pn

i¼1ðTi � HiÞ
Pn

i¼1ðHiÞ
� 100% (1)  

NME¼
Pn

i¼1jTi � Hij
Pn

i¼1ðHiÞ
� 100% (2)  

where T and H indicate the top-down and hypothetical true NOX emis-
sions, respectively, and n indicates the number of model grids. 

The setting of cases in the RSO method is summarized in Table 2. 
Similar to SSO, MEIC and JSEI were used as the a priori emissions for the 
YRD and the SJC, respectively, and the nonlinear and linear modeling 
were separately applied in January and July. The influence of satellite 
observations on top-down estimates was explored in RSO. Two products 
from OMI observations, POMINO v2 and DOMINO v2 (described in 
Section 2.2), were applied in the YRD region. Moreover, the averaging 
kernels (AKs) provide the relation between the retrieved NO2 VCD and 
the hypothetical true NO2 profile. To remove the errors from a priori 
NO2 profile assumption in retrieved NO2 VCD, AKs are recommended for 
application in the comparison between modeled and satellite-observed 
NO2 VCD (Eskes and Boersma, 2003), and thus in the inverse con-
straints of NOX emissions (Han et al., 2015). Compared with other cases 
that applied AKs in the top-down estimation of NOX emissions, two cases 
using POMINO v2 were set using nonlinear modeling without AKs 
(Cases 4 and 8 in Table 2) to analyze the influence of AKs. The bottom-up 
and top-down estimates derived from nonlinear inverse modeling for the 
YRD and the SJC were evaluated with the AQM and ground-based ob-
servations of NO2, and the improvement of top-down NOX emissions can 
be revealed. 

2.2. Satellite observations 

Tropospheric NO2 VCDs were derived from the OMI onboard the 
Aura satellite, the local time of crossing the equator was 1:30 p.m. The 
spatial resolution for the OMI was 24 � 13 km2 at the nadir (Levelt et al., 
2006), one of the finest resolutions of NO2 observation available before 
October 2017. Two products were applied for the YRD region in this 

work. The Dutch Ozone Monitoring Instrument NO2 product (DOMINO 
v2) was developed by Boersma et al. (2011) and is available at htt 
p://www.temis.nl/airpollution/no2.html). Liu et al. (2019) developed 
an improved Peking University Ozone Monitoring Instrument NO2 
product (POMINO v2) for China upon DOMINO v2 that optimized the 
assumptions of the aerosol optical effect, surface reflectance anisotropy 
and vertical profiles of NO2. The correlation coefficient (R2) between 
POMINO v2 and available ground-based MAX-DOAS observations was 
0.8, clearly higher than that of DOMINO v2 (0.64) (Liu et al., 2019). In 
POMINO v2 the NO2 VCDs were used when the cloud fraction was less 
than 30%. 

To match the resolution of AQM, the OMI NO2 VCDs of Level-2 orbit 
product were resampled into an 18 km � 18 km grid system with the 
area weight method, and they were then downscaled to 9 km � 9 km and 
3 km � 3 km with the Kriging interpolation method for the entire YRD 
and SJC regions, respectively. As an example, the NO2 VCDs in July 
2012 for the YRD and the SJC derived from POMINO v2 data are illus-
trated in the Fig. S1 in the supplement. The higher NO2 VCDs were found 
in the east-central YRD and in the cities of Suzhou and Wuxi in the SJC. 

2.3. Inverse modeling of NOX emissions 

The linear (Jena et al., 2014; Gu et al., 2014) and nonlinear (Gu et al., 
2016; Cooper et al., 2017) inverse modeling were applied in AQM to 
constrain NOx emissions. Linear inverse modeling assumes a constant 
linear correlation between the VCDs and emissions, and the top-down 
emissions were calculated with the following equations: 

Et ¼ α�Ωo (3)  

α¼ Ea

Ωa
(4)  

where Et and Ea represent the top-down and a priori emissions, Ωo and 
Ωa represent the observed NO2 and modeled VCD, and α represents the 
linear coefficient between VCD and emissions. 

The nonlinear inverse modeling assumed variable nonlinear corre-
lation between NO2 VCDs and emissions, and the top-down emissions 
were calculated with the following equations: 

Et ¼Ea

�

1þ
Ωo � Ωa

Ωo
β
�

(5)  

△E
E
¼ β

△Ω
Ω

(6)  

where β represents the response coefficient of the simulated NO2 VCD to 
a certain change in emissions. The changed fraction of a priori emissions 
was set at 10% in this work, and its influence on the top-down NOX 
emissions was small based on testing. β was calculated with the changed 
fraction of the a priori emissions and the corresponding changed 
modeled VCD. The constrained daily emissions with the top-down 
method were treated as the a priori emission of the next day, and con-
straining would continue until the change of NME between the top- 
down and the a priori emission was below 1% for e successive times. 

2.4. Model configuration 

The Models-3 Community Multi-scale Air Quality (CMAQ) version 
4.7.1 was applied to constrain and evaluate the NOX emissions. As 
illustrated in Fig. 1, three nested domains were applied in the Lambert 
Conformal Conic projection centred at (110oE, 34oN), with spatial res-
olutions of 27, 9 and 3 km, respectively. The mother domain (D1, 
177 � 127 cells) covered most parts of China, North and South Korea, 
and a few parts of Japan, whereas the second (D2, 118 � 121 cells) and 
third domains (D3, 133 � 73 cells) covered the entire YRD and SJC re-
gions, respectively. The spin-up period in this study was 5 days. The 

Table 2 
The information of cases based on real satellite observation (RSO).   

The a priori 
emissions 

Observation Method Month Resolution 

Case1 MEIC for 
2012 

POMINO v2 Nonlinear January 9 km 

Case2 MEIC for 
2012 

DOMINO v2 Nonlinear January 9 km 

Case3 MEIC for 
2012 

POMINO v2 
without AKs 

Nonlinear January 9 km 

Case4 MEIC for 
2012 

POMINO v2 Nonlinear July 9 km 

Case5 MEIC for 
2012 

DOMINO v2 Nonlinear July 9 km 

Case6 MEIC for 
2012 

POMINO v2 
without AKs 

Nonlinear July 9 km 

Case7 JSEI for 2012 POMINO v2 Nonlinear January 3 km 
Case8 JSEI for 2012 POMINO v2 Nonlinear July 3 km 

Note: The NOX emissions displayed in the table do not cover those from lighting 
and soil, and the emissions from the two sources were described in Section 2.4. 
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boundary condition of D1 was taken from clean air, and those of D2 and 
D3 were taken from the modeled results of D1 and D2, respectively. The 
height of the first model layer was approximately 60 m, and the PBL 
scheme of the model was ACM2 (Pleim, 2007). Details on model 
configuration were described in Zhou et al. (2017) and Yang and Zhao 
(2019). 

As described in Section 2.1, the emissions of anthropogenic origin in 
D1 and D2 were obtained from MEIC, and those in D3 were taken from 
Zhou et al. (2017). The original horizontal resolution of MEIC was 
0.1� � 0.1�. The emissions of residential sources were downscaled to 
9 km according to the spatial distribution of population, and the emis-
sions of power, industry and transportation were downscaled to 9 km 
according to that the spatial distribution of gross domestic product 
(GDP). Biogenic emissions was from the Model Emissions of Gases and 
Aerosols from Nature developed under the Monitoring Atmospheric 
Composition and Climate project (MEGAN MACC, Sindelarova et al., 
2014), and the emissions of Cl, HCl and lightning NOX were from the 
Global Emissions Initiative (GEIA, Price et al., 1997). The NOX emissions 
from soil were collected from Yienger and Levy (1995), and were 
doubled as suggested by Zhao and Wang (2009) and Lin et al. (2010). 
Biomass open burning was not included in the CMAQ simulation, 
because the open biomass burning of ~70% for YRD was concentration 
in June (Yang and Zhao, 2019) and it has a little influence on the results 
of other months. 

Meteorological fields were provided by the Weather Research and 
Forecasting Model (WRF) version 3.4, and the domain and vertical 
setting was consistent with the CMAQ. The outputs were transferred by 
the meteorology chemistry interface professor (MCIP) version 4.2 into 
the chemistry transport module in CMAQ. The simulated parameters 
from WRF for D2 and D3 in January, April, July and October 2012 were 
compared with the observation dataset of the US National Climate Data 
Center (NCDC), as summarized in Table S2 and S3 in the Supplement. 
For D2, the average biases of wind speed for the four months between 
the two datasets were smaller than 0.2 m/s. The root mean square de-
viation (RMSE) of wind direction for the four months between the two 
datasets were close to or smaller than 45�, and the indexes of agreement 
(IOAs) of temperature and relative humidity between the two datasets 
were higher than 0.7. The meteorological parameters for D2 and D3 
were in compliance with the benchmarks derived from Emery et al. 
(2001) and Jim�enez et al. (2006). 

The hourly NO2 concentrations of 43 stations in 12 cities and daily 
NO2 concentrations of 2 cities were used to evaluate the NOX emission 
inventories. The hourly NO2 concentrations were derived from the 
China National Environmental Monitoring Center (http://www.cnemc. 
cn/). The daily NO2 concentrations for the cities of Anqing and Shaox-
ing were obtained from the local environmental protection bureau 
(http://aqxxgk.anqing.gov.cn//list.php?unit¼HA028,xxf 
lid¼32060100 and http://sxepb.sx.gov.cn/col/col1488046/index. 
html). Locations of the ground observation stations are indicated in 
Fig. 1. 

3. Results and discussion 

3.1. Evaluation based on synthetic satellite observation (SSO) 

Shown in Fig. 2 are the differences between the top-down NOX es-
timates and the hypothetical true NOX emission inventory in Cases 1–8 
using the SSO method. In general, the NMBs for all the cases were 
smaller than 6%, which implies that the total amount of NOX emissions 
could be well constrained based on the nonlinear and linear inverse 
modeling. Moreover, the results indicated that the influences on the 
total amount of the constrained top-down NOX emissions were limited 
by the changes in inverse modeling (linear or nonlinear), spatial reso-
lution, the a priori emissions and season. Larger differences of NMEs 
were found for most cases, which implies that the spatial distribution of 
the top-down estimate depended more on the inverse modeling and 

relevant influencing factors. Fig. S2 in the supplement shows the spatial 
distribution of NOX emissions in MEIC for D2 at the horizontal resolution 
of 9 km and that in JSEI for D3 at the resolution of 3 km in July 2012. By 
comparing Fig. 2 with Fig. S2, larger differences between the top-down 
and the “true” estimates were detected in the area with relatively high 
emissions, e.g., the east-central YRD region and the urban area of 
Nanjing in the SJC. 

The NMEs between the hypothetical true and the top-down estimates 
based on the nonlinear inverse modeling were smaller than those based 
on the linear modeling in all the cases in Fig. 2, and the maximum was 
calculated at 25.9% for the SJC region at a resolution of 3 km for 
January (Fig. 2f). The largest and smallest difference of NMEs between 
the nonlinear/linear inverse modeling result and the “true” emissions 
were found for the SJC region (3 km resolution) in January (9.5%, 
panels e and f) and for the YRD region (9 km resolution) in July at (1.9%, 
panels c and d), respectively. The results suggest that the NOX emissions 
could be effectively constrained with the nonlinear inverse approach 
compared to the linear one and that the nonlinear method should 
preferentially be selected for the top-down estimation of NOX emissions. 
Principally the relationship between NOX emissions and NO2 VCDs 
could be better captured with a nonlinear constraint approach (Gu et al., 
2016). The relationships between NOX emissions and NO2 VCDs should 
be nonlinear. It was mainly because that the photochemical feedbacks 
between NOx and OH were nonlinear (Gu et al., 2016). In low NOX 
emission condition, the increase of NOX emission promotes the OH 
production and reduces its lifetime, and increase of NOX emission re-
strains the OH production and increases its lifetime in high NOX emis-
sion condition. Fig. S3 in the supplement shows the variation of NME 
between the top-down and hypothetical true NOX estimates for the YRD 
region during the iteration processes with the linear and nonlinear in-
verse modeling. The average difference of NME between the linear and 
nonlinear inverse modeling in the iterations was 0.8% in July, clearly 
smaller than that in January (4.1%). As the relationship between NOX 
emissions and NO2 VCD was closer to linear when the NO2 VCD was 
smaller (Gu et al., 2016), the influence of the inverse modeling approach 
was small in summer. 

With the same inverse modeling approach, a priori emissions and 
spatial resolution, the top-down estimates in July were closer to the 
hypothetical true emissions than those in January, indicated by the 
smaller NMEs. Similarly, Cooper et al. (2017) found that the NMEs be-
tween the hypothetical true emissions at the global scale and the 
top-down estimate derived with nonlinear modeling approach at a 
spatial resolution of 2� lat � 2.5� lon was larger in January than in July. 
The possible reason was that the regional transport of NOX becomes 
easier with longer distances due to a longer lifetime in winter and some 
emissions were thus harder to be constrained in the correct area. In 
summer, the faster dispersion of NOX can be expected in the YRD region, 
attributed to higher temperature and stronger oxidation, thus the 
top-down methodology could be more applicable. The largest difference 
in NME between January and July was found at 13.7% in the cases with 
the linear modeling approach at 3 km resolution (panels e and g). The 
results indicate that the influence of seasonal meteorology on NOX 
emissions constraint would be enhanced with linear inverse modeling, 
particularly at finer resolution. 

Cases 9–10 explored the influences of spatial resolution and the a 
priori emissions on the top-down estimation of NOX emissions; the dif-
ferences between the top-down and hypothetical true emissions are 
shown in Fig. 3. Similar to Fig. 2, the NMB for all the cases in Fig. 3 were 
smaller than 3%. The results again suggest that nonlinear inverse 
modeling was effective in the calculation of the total amount of NOX 
emissions. With fixed season and spatial resolution, the NMEs for all 
cases in Fig. 3 were larger than those in Fig. 2. The maximum growth of 
NME was 6.7% in winter at 3 km resolution (Fig. 3b versus Fig. 2f). The 
result implies that the influence of the a priori emissions on the inverse 
modeling should be considered, and that the improvement in detailed 
information of emissions sources in the bottom-up inventory was helpful 
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Fig. 2. The differences between the top-down estimates and hypothetical true NOX emissions based on Cases 1–8 in Table 1.  
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for the evaluation of the emissions from a top-down perspective as well, 
particularly at finer spatial resolution. Remarkably, the average NME 
between the a priori and the hypothetical true emissions for Cases 9–10 
was 2.6 times larger than that for Cases 2 and 4; however, the analogue 
number declined to 0.2 times between the top-down and the hypothet-
ical true emissions. The result suggests that the top-down modeling 
approach would reduce the bias between the a priori and the hypo-
thetical true emissions via the inverse constraint of emissions. 

With other influencing factors fixed, the NMEs with 9 km resolution 
(Fig. 3a) were smaller than those with 3 km resolution (Fig. 3b), which 
indicates that the top-down estimates with coarser resolution could be 
more reliable. A similar result was found by Cooper et al. (2017) that the 
NMEs between the “true” emissions and the top-down estimates 
declined when 4� lat � 5� lon resolution instead of 2� lat � 2.5� lon was 
applied in the nonlinear inverse modeling for January. With finer AQM 
resolution, more emissions could be expected to transport into neigh-
boring grids and thus lead to bias in the top-down estimation. The 

accuracy of the a priori emission could also be a challenge for AQM at 
finer resolution, as more detailed information of emission sources 
should be collected (Zheng et al., 2017). 

3.2. Evaluation based on real satellite observation (RSO) 

Based on the nonlinear modeling approach, the NOX emissions were 
constrained with POMINO v2 and DOMINO v2 for the YRD region at the 
resolution of 9 km, and the differences (DOMINO v2 minus POMINO v2) 
between the top-down estimates with the two satellite products are 
shown in Fig. 4. The NMEs for January and July were calculated at 
182.0% and 99.1%, respectively. The corresponding NMEs of NO2 VCDs 
between DOMINO v2 and POMINO v2 were estimated to be 48.9% and 
25.8% for January and July, respectively, as shown in Fig. S4 in the 
supplement. The result indicates that the influence of satellite data is 
considerable in both winter and summer, and that the selection of 
appropriate satellite data is crucial to constrain NOX emissions. Both the 

Fig. 3. The differences between the top-down estimates and hypothetical true NOX emission inventories based on Cases 9–10 in Table 1.  
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NMBs and NMEs in January were clearly larger than those in July, which 
implies that satellite data played a more important role on NOX emis-
sions constraining in winter. Since POMINO v2 made important progress 
in the aerosol optical effect on retrieval of satellite data, its influence on 
NOX constraint is expected to be greater in winter due to the higher 
aerosol concentration than in summer. The NMB between the con-
strained NOX emissions with DOMINO v2 and POMINO v2 was only 
0.5% in July, which implies that the influence of satellite data on the 
total NOX emissions was small in summer. Regarding the spatial devi-
ation, the constrained emissions from DOMINO v2 were larger than 
those from POMINO v2 in eastern and southern of Jiangsu and smaller in 
the east-central YRD in January, which mainly resulted from the dif-
ference in spatial distribution of NO2 VCD from DOMINO v2 and 
POMINO v2, as shown in Fig. S4. 

Fig. 5 shows the difference (without AKs minus AKs) between the 
top-down estimates without and with AKs based on the nonlinear 

modeling approach and POMINO v2 for the YRD region. The NMEs 
between the constrained emissions for January and July were calculated 
at 38.7% and 49.7%, respectively, implying that the influence of AKs on 
NOX constraint should be taken seriously in both winter and summer. 
Substantial uncertainty exists in the top-down NOX emission estimation 
without AKs. The NMB and NME in July were larger than those in 
January, implying that the influence of AKs on top-down NOX emissions 
in summer could be greater than in winter. A similar result was found for 
Europe that the influence of AKs on the comparison of simulated and 
observed NO2 VCD in summer was larger than in winter (Boersma et al., 
2016). The larger differences were commonly found in the east-central 
YRD with intensive NOX emissions, which implies the enhanced 
importance of AKs on emission constraining for those areas. Because the 
influence of the a priori NO2 profile assumption on retrieving of NO2 was 
expected to be larger in the regions with higher emissions (Boersma 
et al., 2016), application of AKs in those regions could more effectively 

Fig. 4. The differences (DOMINO v2 minus POMINO v2) between the top-down NOX estimates based on DOMINO v2 and POMINO v2 for YRD with the nonlinear 
approach (panel a derived from Cases 1 and 2 in Table 2; panel b derived from Cases 4 and 5 in Table 2; The NMB and NME were calculated with the equations (S1) 
and (S2) in the supplement). 

Fig. 5. The differences (without AKs minus with AKs) between top-down NOX estimates derived without and with AKs based on nonlinear approach and POMINOv2 
data (panel a derived from Cases 2 and 3 in Table 2; panel b derived from Cases 5 and 6 in Table 2; The NMB and NME were calculated with the equations (S3) and 
(S4) in the supplement). 
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reduce the bias from the a priori NO2 profile. 

3.3. Evaluation with the AQM and ground observations 

CMAQ simulation was conducted for both the a priori and the top- 
down estimates of NOX emissions derived from the nonlinear 
approach for the YRD (Cases 2 and 6 in Table 2) and those for the SJC 
(Cases 10 and 12 in Table 2). The model performances are summarized 
in Table 3 for January and July 2012, indicated by the comparisons 
between the simulated and observed ground NO2 concentrations. The 
NMB and NME derived from the a priori emissions in the SJC were 
smaller than those in YRD. It was mainly because that the bottom-up 
emission inventory for SJC (JSEI) was developed at the city level and 
incorporated most available information about industrial plants and 
vehicles, and the uncertainty of the inventory was expected to be 
reduced compared with the national inventory (MEIC) for the smaller 
SJC region (Zhou et al., 2017). 

The NMBs and NMEs based on the top-down estimates were smaller 
than those based on the a priori emissions for both January and July in 
the YRD at the resolution of 9 km. The better modeling performance 
from ground observation indicates that the NOX emission estimation 
could be improved via the top-down constraint with satellite observa-
tions at the regional scale. In contrast, at the city-cluster scale with 3 km 
resolution, the NMBs and NMEs based on the top-down estimates were 
equal to or larger than those based on the a priori emission for both 
January and July. The result implies that the NOX emission estimates at 
very fine spatial resolution could hardly be improved by the inverse 
modeling with current products of satellite-derived NO2 VCDs probably 
because there was uncertainty in the inverse approach and satellite 
observations at finer resolution. Given that the estimates of NOX emis-
sions at both 9 km and 3 km resolution could be improved in SSO 
method described in Section 3.1, the relatively poor top-down estimates 
with high temporal resolution from the RSO method at city cluster scale 
resulted largely from the coarse spatial resolution of OMI. However, the 
emissions with high spatial resolution might be developed by sacrificing 
the temporal resolution (Kong et al., 2019). 

3.4. Comparison and evaluation of the bottom-up and satellite-derived 
top-down estimates of emissions in the YRD 

According to the evaluation with the AQM and ground observations, 
the best option of inversing NOX emissions for YRD region was identified 
as application of POMINO v2 with the nonlinear inverse modeling at the 
resolution of 9 km. With this optimized option, the top-down estimates 
of YRD NOX emissions were derived for January, April, July and October 

2012, and the monthly total emissions of the bottom-up (MEIC, 2012) 
and the top-down estimates are shown in Fig. 6. The top-down estimates 
were smaller than the a priori emissions for the four months, which 
implies that current bottom-up inventory might overestimate the emis-
sion for all seasons. On average, the monthly emissions from the top- 
down estimation were calculated at 219 Gg/month, 44% smaller than 
those from the a priori emissions. The largest and smallest over-
estimations were found in January and April, and the top-down esti-
mates were 60.4% and 24.6% smaller than the a priori emissions, 
respectively. Similar result was found by Qu et al. (2017), who suggested 
that China’s NOX emissions for 2012 were overestimated by 45% in the 
bottom-up inventory. Consistent with the results for the entire country 
in Qu et al. (2017), both the bottom-up and top-down estimates of this 
work found the largest and smallest NOX emissions in summer and 
winter, respectively, However, the ratio of summer to winter emissions 
in the top-down estimation was 2.07, much larger than that of 1.17 in 
the bottom-up inventory. The results indicate that the seasonal variation 
of NOX emissions could potentially be underestimated in the bottom-up 
inventory. 

The spatial differences of the bottom-up and top-down estimates of 
NOX emissions in January, April, July and October 2012 are shown in 
Fig. 7, and the bottom-up and top-down emissions of YRD in January, 
April, July and October of 2012 are shown in Fig. S5 in the supplement. 
The top-down estimates were smaller than the bottom-up NOX emission 
inventories in the east-central YRD with high emissions, which implies 
that overestimation in the bottom-up inventory commonly exists in the 
region with higher emissions. In contrast, the top-down estimates were 
larger than the bottom-up estimates in most of Zhejiang with relatively 
small emissions. On one hand, the emissions in the region were probably 
allocated in the developed areas due to use of the distribution coefficient 
of the GDP or population. On the other hand, some emission sources in 
this region could be missed in the country level emission inventory due 
to the difficulty of collecting information. The overestimation for the 
developed areas largely resulted from the insufficient consideration of 
improved emission controls in the current bottom-up inventory (Zhou 
et al., 2017; Zhang et al., 2019). To improve air quality, the government 
has been conducting a series of emission control measures, particularly 
on big power and industrial sources with relatively large emissions. 
Consequently, the emissions from those sources could be considerably 
reduced, mainly due to the improved removal efficiency of pollutant 
control devices. However, such information could hardly be full 
captured in bottom-up inventories, particularly at the national scale. 
Moreover, increasing numbers of plants have been moved from devel-
oped regions to suburban or less-developed regions, although, the eco-
nomic indicators (such as gross domestic product) and population were 
still applied to allocate the emissions if the precise locations of those 

Table 3 
Model performance statistics for NO2 concentrations between observation and 
CMAQ simulation with the a priori and top-down NOX estimates in January and 
July 2012. 

NMB¼
Pn

i¼1ðMi � OiÞ
Pn

i¼1ðOiÞ
� 100%; NME¼

Pn
i¼1jMi � Oij

ðOiÞ
� 100%      

January July 

The a priori Top- 
down 

The a priori Top- 
down 

9 km Hourly NMB 56.4% 34.8% 109.6% 43.7% 
NME 57.0% 39.7% 110.6% 49.4% 

Daily NMB 56.4% 34.8% 109.8% 43.6% 
NME 56.4% 36.2% 109.8% 43.6% 

3 km Hourly NMB 49.2% 49.7% 44.9% 55.4% 
NME 53.0% 53.8% 57.1% 64.0% 

Daily NMB 49.1% 49.6% 44.8% 55.3% 
NME 49.3% 49.6% 45.2% 55.3% 

Note: NMB and NME were calculated using the following equations (M and O 
indicate the results from modeling prediction and observation, respectively). 

Fig. 6. The total bottom-up and top-down NOX emissions derived from the 
nonlinear method and POMINOv2 data for YRD in January, April, July and 
October 2012. 
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plants were unclear or not timely recorded, which led to elevated 
emissions in the developed regions such as the east-central YRD. 

The observed and simulated hourly NO2 concentrations using the 
bottom-up and top-down estimates are shown in Fig. 8 for January, 
April, July and October 2012 (note that the NMEs and NMBs for January 
(panel a) and July (panel c) are provided in Table 3 as well). The 
observational data were taken from the 43 stations of China National 
Environmental Monitoring Center, as shown in Fig. 1. For all the 
simulated months, the simulated NO2 concentrations derived with 
bottom-up NOX inventories were clearly larger than the observations in 
the two months, which again indicates the overestimation of the bottom- 
up estimates on NOX emissions. Much better model performance was 
achieved with the top-down estimates compared with that with the 
bottom-up ones, which largely resulted from the improvement in NOX 
emissions estimation with the inverse constraining approach based on 
satellite observations. Larger NMB and NME were found in summer. On 
one hand, the sensitivity of NO2 concentration to emissions was larger in 
summer than in winter (Gu et al., 2016), and stronger changes in 
simulated concentrations were thus expected in summer, with similar 
changes in emissions. On the other hand, the error could be relevant for 

the simulation of meteorological parameters such as wind speed. In the 
WRF modeling, the wind speed was underestimated by 8% for July and 
the average error for the other months was only 4%.The largest 
improvement on the model performance based on the top-down esti-
mate instead of the bottom-up one was found for July, and the NMBs and 
NMEs were respectively reduced by 65.9% and 61.2%. Because the NO2 
concentration was expected to respond more strongly to the change in 
emissions in summer, more effective improvement of modeling perfor-
mance was expected with the constrained top-down estimate of NOX 
emissions in the season. Remarkably, there were some problems in PBL 
schemes of CMAQ before version 5.1 that led to overestimation of 
diurnal variation of NO2 and differences between simulations and ob-
servations (Liu et al., 2018b). 

The uncertainties of top-down estimation of NOX emissions for the 
YRD were mainly associated with the inverse modeling approach, sat-
ellite observations and the AQM. The NMBs and NMEs between the top- 
down estimates based on the nonlinear inverse approach and the hy-
pothetical “true” emissions in the SSO method were � 5.6%–3.1% and 
12.5%–32.6%, respectively. The results suggested that uncertainty 
existed in the inverse approach. The uncertainty of observed NO2 VCDs 

Fig. 7. The spatial differences (top-down minus bottom-up) between the top-down NOX emission inventories and bottom-up NOX estimates derived from the 
nonlinear method and POMINOv2 data for YRD in January, April, July and October 2012 (The NMB and NME were calculated with the equations (S5) and (S6) in 
the supplement). 
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could reach 29.4% in cloud-free days (Liu et al., 2019), which implies 
that the bias from satellite observation was an important source of the 
uncertainty in the top-down estimation of NOX emissions. The AQM 
uncertainty was associated with meteorological fields and chemistry 
mechanisms and its overall uncertainty is difficult to be quantified at 
present. Specially, the problems in PBL schemes of CMAQ before version 
5.1 also brought some uncertainties (Liu et al., 2018b). Better top-down 
estimates could be expected with improvement in AQM in the future. 

4. Conclusions 

Taking the YRD and the SJC region in China as examples, we 
comprehensively evaluated the top-down estimates of NOX emissions 
and relevant influencing factors based on synthetic and real satellite 
observations. The total amounts of emissions could be well constrained 
and were slightly influenced by the inverse approach, the a priori 
emissions, and the horizontal resolution, while the seasonal and spatial 
distribution of emissions largely depended on them. Substantial differ-
ence between the top-down estimates derived from DOMINO v2 and 
POMINO v2 implied that the appropriate satellite data were of great 
importance in constraining NOX emissions. The estimation of NOX 
emissions could be improved based on the nonlinear inverse modeling 

approach at the resolution of 9 km, whereas the bias was elevated at 
3 km resolution probably due to the coarser spatial resolution of OMI. 
Overestimation in NOX emissions was indicated in the current bottom- 
up inventory for the YRD region, and the model performance with the 
top-down estimates was largely improved for all seasons compared with 
that with the bottom-up estimates, particularly for summer. Better top- 
down estimates at the regional scale could be expected along with 
optimized new satellite observation products at finer resolution (e.g., 
TROPOMI) in the future. 
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