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Abstract. We combined a chemistry transport model (the
Weather Research and Forecasting and the Models-3 Com-
munity Multi-scale Air Quality Model, WRF/CMAQ), a
multiple regression model, and available ground observa-
tions to optimize black carbon (BC) emissions at monthly,
emission sector, and city cluster level. We derived top-down
emissions and reduced deviations between simulations and
observations for the southern Jiangsu city cluster, a typi-
cal developed region of eastern China. Scaled from a high-
resolution inventory for 2012 based on changes in activity
levels, the BC emissions in southern Jiangsu were calculated
at 27.0 Gg yr−1 for 2015 (JS-prior). The annual mean con-
centration of BC at Xianlin Campus of Nanjing University
(NJU, a suburban site) was simulated at 3.4 µg m−3, 11 %
lower than the observed 3.8 µg m−3. In contrast, it was sim-
ulated at 3.4 µg m−3 at Jiangsu Provincial Academy of Envi-
ronmental Science (PAES, an urban site), 36 % higher than
the observed 2.5 µg m−3. The discrepancies at the two sites
implied the uncertainty of the bottom-up inventory of BC
emissions. Assuming a near-linear response of BC concen-
trations to emission changes, we applied a multiple regres-
sion model to fit the hourly surface concentrations of BC at
the two sites, based on the detailed source contributions to
ambient BC levels from brute-force simulation. Constrained
with this top-down method, BC emissions were estimated at
13.4 Gg yr−1 (JS-posterior), 50 % smaller than the bottom-
up estimate, and stronger seasonal variations were found.
Biases between simulations and observations were reduced
for most months at the two sites when JS-posterior was ap-

plied. At PAES, in particular, the simulated annual mean de-
clined to 2.6 µg m−3 and the annual normalized mean error
(NME) decreased from 72.0 % to 57.6 %. However, applica-
tion of JS-posterior slightly enhanced NMEs in July and Oc-
tober at NJU where simulated concentrations with JS-prior
were lower than observations, implying that reduction in total
emissions could not correct modeling underestimation. The
effects of the observation site, including numbers and spa-
tial representativeness on the top-down estimate, were fur-
ther quantified. The best modeling performance was obtained
when observations of both sites were used with their differ-
ence in spatial functions considered in emission constrain-
ing. Given the limited BC observation data in the area, there-
fore, more measurements with better spatiotemporal cover-
age were recommended for constraining BC emissions ef-
fectively. Top-down estimates derived from JS-prior and the
Multi-resolution Emission Inventory for China (MEIC) were
compared to test the sensitivity of the method to the a pri-
ori emission input. The differences in emission levels, spa-
tial distributions, and modeling performances were largely
reduced after constraining, implying that the impact of the a
priori inventory was limited on the top-down estimate. Sensi-
tivity analysis proved the rationality of the near-linearity as-
sumption between emissions and concentrations, and the im-
pact of wet deposition on the multiple regression model was
demonstrated to be moderate through data screening based
on simulated wet deposition and satellite-derived precipita-
tion.
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1 Introduction

Black carbon (BC), alternatively referred to as elemental
carbon (EC), is a crucial component of atmospheric par-
ticles and comes mainly from incomplete combustion of
fossil fuels and biomass. BC has adverse effects on hu-
man health as it absorbs harmful volatile organic com-
pounds like polycyclic aromatic hydrocarbons (Dachs and
Eisenreich, 2000). Furthermore, BC contributes to global
warming by intercepting and absorbing sunlight (Jacob-
son, 2001; Ramanathan and Carmichael, 2008). Bond et
al. (2013) assessed that the global average radiative forc-
ing of BC was+1.1 W m−2 (90 % confidence interval: 0.17–
2.1 W m−2), which was more than two-thirds that from CO2
(+1.56 W m−2). Since BC remains for only a few days in the
atmosphere, it is an effective way to mitigate climate warm-
ing in the short term by reducing BC emissions. However,
due to a lack of sufficient understanding of major emission
sources, the effect of BC on regional climate was not fully
quantified by models.

BC emission inventories are traditionally developed with
the bottom-up method based on activity levels and emission
factors. Previous studies of chemistry transport modeling
(CTM) based on emission inventories found large discrep-
ancies between simulated and observed BC concentrations.
Koch et al. (2009) found that 16 models applied in the Aero-
Com aerosol model inter-comparison project underestimated
surface BC levels by a factor of 2–3. Hu et al. (2016) found
that CTM significantly underestimated the peak surface con-
centrations of BC over the northwestern United States, likely
due to missing strong local fire events in fire emissions.
Moreover, large differences existed in various bottom-up
emission inventories, particularly for China, with large en-
ergy consumption, complicated emission source categories,
and fast changes in emission characteristics. BC emissions
in China for 2001 and 2006 in the Regional Emission in-
ventory in ASia (REAS 2.1, Kurokawa et al., 2013) were
smaller than those in the Intercontinental Chemical Trans-
port Experiment-Phase B (INTEX-B, Zhang et al., 2009),
but the growth rate of BC emissions in REAS 2.1 was larger
than that in INTEX-B (30 % vs. 15 %) for the 6 years. Ohara
et al. (2007) evaluated the inter-annual trend in China’s BC
emissions with constant emission factors, and found that
the national emissions continuously decreased by 23 % from
1990 to 2000. In contrast, Lei et al. (2011) suggested a much
smaller inter-annual variability with the peak annual emis-
sions found in 1996 for the same period. The differences re-
sulted largely from the use of activity levels from various
data sources, especially for residential biofuel combustion.
The gaps between different studies implied potentially large
uncertainties in BC bottom-up emission inventories. The un-
certainties of BC emission estimates for China were reported
at ±484 %, ±208 %, and ±98 % by Streets et al. (2003),
Zhang et al. (2009), and Lu et al. (2011), respectively. Due
to a lack of sufficient local field tests, emission factors were

commonly taken from foreign studies with big variety de-
pending on fuel and combustion condition (Bond et al., 2004;
Cao et al., 2006; Lei et al., 2011; Qin and Xie, 2012; Streets
et al., 2003, 2001; Zhang et al., 2009). It was also difficult to
obtain accurate and detailed activity data, particularly for the
main sources of BC, including small industries (e.g., coke
and brick production), off-road transportation, and residen-
tial solid fuel combustion.

Besides the large uncertainty in emission estimation, chal-
lenges existed as well in updating BC inventories continu-
ously (Hong et al., 2017; Lu et al., 2011; Xia et al., 2016;
Zhao et al., 2013). To beat severe air pollution, China has
been conducting a series of measures in energy conservation
and emission control, leading to dramatic changes in energy
structure, emission factors and removal rates of air pollutant
control devices (Zhao et al., 2014). Such changes could be
partly tracked by a continuous emission monitoring system
(CEMS) that was commonly installed at big industrial enter-
prises. Large fractions of BC emissions, however, came from
medium and small sources, and their most recent improve-
ments in manufacturing technologies and emission controls
were relatively difficult to obtain timely and efficiently.

Given the above limitations in bottom-up inventories, dif-
ferent top-down approaches were applied to evaluate BC
emissions. For example, Cohen and Wang (2014) presented
a Kalman filter technique to estimate the global BC emis-
sions based on satellite-derived radiances and surface con-
centrations from global and regional networks. The adjoint-
based 4-D variational approach was also applied to constrain
the bottom-up BC emissions at the global or national scales
(Zhang et al., 2015; Xu et al., 2013; Guerrette et al., 2017).
A near-linear response of BC concentrations to emission
changes was generally assumed at national (Fu et al., 2012;
Kondo et al., 2011; Wang et al., 2013) and regional (Li et
al., 2015; Wang et al., 2011) scales, due to its weak activ-
ity in atmospheric chemistry reaction. The ratio of observed
to simulated concentration can be used as a scaling factor to
correct BC emissions. Kondo et al. (2011) made continuous
measurement of BC concentrations for a full year on a remote
island in the East China Sea. With the data strongly affected
by emissions from China identified and those largely influ-
enced by wet deposition excluded, they estimated China’s
annual anthropogenic BC emissions at 1.92 Tg C yr−1. Wang
et al. (2013) verified this linearity by conducting sensitivity
simulation in which emissions were increased by 50 %. After
excluding observation data of heavy pollution and strong pre-
cipitation events at five Chinese sites, they calculated China’s
annual BC emissions at 1.80 Tg C yr−1. The results of both
studies were close to a bottom-up estimate at 1.81 Tg C yr−1

by Zhang et al. (2009). Based on observations at 10 Chinese
background and rural sites, Fu et al. (2012) applied a multi-
ple regression model and CTM to quantify China’s BC emis-
sions. They calculated the total emissions at 3.05 Tg C yr−1,
59 % larger than those by Zhang et al. (2009). Using a similar
approach, Li et al. (2015) estimated BC emissions to be 34 %
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larger than the bottom-up inventory in the Pearl River delta in
southern China by Zheng et al. (2012). Park et al. (2003) used
the multiple linear regression to fit the Interagency Moni-
toring of Protected Visual Environments (IMPROVE) data
and estimated that BC emissions from fossil fuel and biofuel
burning in the United States should be increased by 15 %.
Combining a general circulation model simulation and the
receptor modeling approach, Verma et al. (2017) constrained
BC emissions over India based on the scaling factor (the ratio
of simulated to observed BC concentration).

To our knowledge, limitations remained in the assessment
of BC emissions based on the top-down approach. Current
available studies focused mainly on the global or national
scale, and few evaluations could be found for city clusters.
With the aim of examining emission control policies and
quantifying impacts of BC on local climate and air qual-
ity, there was a strong need for studies at the city cluster
scale that require ground observation and an emission in-
ventory with improved details. Regarding measurement data,
monthly or annual means were commonly used in previ-
ous studies, and information of heavy-polluted events was
lost when targeting a local scale. In general, observations
at a higher temporal resolution were considered an impor-
tant means to effectively reduce uncertainties (Matsui et al.,
2013; Wang et al., 2013; Gilardoni et al., 2011). Moreover,
it was somewhat arbitrary to differentiate emissions by sec-
tor in previous top-down estimates, attributed to a lack of
detailed information on source categories from bottom-up
inventories. The method was thus insufficient to make sub-
stantial improvement on emission evaluation by sector, or to
clearly stress the direction of further revisions on bottom-up
inventories.

In this work, therefore, we integrated CTM, multiple re-
gression model and available hourly ground observations to
provide top-down constraints of BC emissions and to reduce
deviations between simulations and observations at the city
cluster scale. We selected the southern Jiangsu city cluster,
including the cities of Suzhou, Wuxi, Changzhou, Zhenjiang,
and Nanjing, a typical region with a large population and
economy in the Yangtze River delta (YRD), China (see the
geographic location and cities in Fig. S1 in the Supplement).
Given its intensive industry and energy consumption, the
city cluster was regarded as one of the largest BC emission
sources in eastern China and BC emissions from this region
accounted for nearly half of the total emissions in Jiangsu
(Zhou et al., 2017). The heavy air pollution was found in
the region: the annual averages of fine particle (PM2.5) con-
centrations in all the cities exceeded the National Ambient
Air Quality Standard (NAAQS, 35 µg m−3) in 2012. Under
the pressure of air quality improvement, Jiangsu conducted
aggressive actions of emission control, leading to a 20 % re-
duction in the annual average of PM2.5 concentration from
2013 to 2015. Based on a provincial bottom-up emission in-
ventory, we estimated the contributions to BC concentrations
by sector at two ground observation sites through the brute-

force method in CTM. The results, together with observed
ambient BC concentrations, were incorporated into a multi-
ple regression model to derive the top-down estimate of BC
emissions for the southern Jiangsu city cluster. The advan-
tage of top-down estimate against bottom-up inventory was
then judged by CTM and ground observations. The factors
that would potentially influence the top-down estimate were
also evaluated, including number and spatial representative-
ness of observation sites, and the a priori bottom-up emission
input. The near-linearity assumption in the multiple regres-
sion model and the effect of wet deposition on the top-down
estimate were finally evaluated.

2 Data and method

2.1 Bottom-up inventories of BC emissions

Two bottom-up emission inventories at different spatial
scales were used in this work. At the national scale, the
Multi-resolution Emission Inventory for China (MEIC, http:
//www.meicmodel.org/, last access: 12 February 2019) was
developed by Tsinghua University, with an original horizon-
tal resolution at 0.25◦× 0.25◦. At the provincial scale, Zhou
et al. (2017) collected the best available information of in-
dustrial sources in Jiangsu and developed an inventory with
higher resolution at 3 km×3 km. The latter was proven to be
more supportive in air quality simulation at the city clus-
ter scale (Zhou et al., 2017; Zhao et al., 2017). In both in-
ventories, anthropogenic BC emissions for 2012 came from
four major sectors: power generation, industry, residential
sources, and transportation. The national and provincial in-
ventories for 2015 (mentioned, respectively, as MEIC-prior
and JS-prior hereinafter) were obtained using a simple scal-
ing method based mainly on changes in activity levels (en-
ergy consumption and industrial production, etc.) between
the 4 years. Table S1 in the Supplement summarizes the data
sources of activity levels and the scaling factors by sector
in JS-prior. As MEIC-prior includes only four major sec-
tors, the scaling factor for each sector was calculated as the
average of those for subcategories within the sector. Poten-
tial changes in BC emission factors from 2012 to 2015, e.g.,
those attributed to varied manufacturing technologies and/or
penetrations of emission control devices, were not consid-
ered in the calculation. The implication and uncertainty from
that simplified emission scaling method will be further dis-
cussed in Sect. 4.2. The monthly distributions of emissions
from power plants and industry plants in JS-prior were de-
pendent on those of electricity generation and typical indus-
trial production, respectively. Such information was investi-
gated by Zhou et al. (2017) according to the official statis-
tics of the country (http://data.stats.gov.cn/, last access: 12
February 2019). The real-time monitoring on urban traffic in
Nanjing was applied to allocate the temporal distribution of
emissions from on-road vehicles in the whole regions in JS-
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prior. The weekly and hourly distributions of other sources
were taken from Li et al. (2011). For MEIC-prior, we ob-
tained the monthly emissions directly and applied the same
weekly and hourly distributions as JS-prior.

2.2 Top-down emission estimation with multiple
regression model

The top-down emissions of BC in southern Jiangsu (men-
tioned as JS-posterior hereinafter) were estimated with a
multiple regression model using ground observations as con-
straint. The regression model matched BC contributions by
sector (calculated through CTM) against measured ambient
hourly BC concentrations:

cobs = (1)
β1cpower+β2cindustry+β3cresidential+β4ctransportation+ ε,

where cobs is the vector of observed hourly BC concentra-
tions. cpower, cindustry, cresidential, and ctransportation are the vec-
tors of BC concentrations contributed by power generation,
industry, residential sources, and transportation in southern
Jiangsu and nearby regions (the third domain of air qual-
ity modeling, as described later in Sect. 2.3), respectively,
and they were simulated using the brute-force method as de-
scribed in Sect. 2.3. Southern Jiangsu and nearby cities were
considered as a whole in the multiple regression model based
on an assumption of similar implementation of air pollution
control measures for the two regions. Tables S2 and S3 sum-
marize, respectively, the reduction rates in BC emissions es-
timated by MEIC and those in observed PM2.5 concentra-
tions for recent years for southern Jiangsu and nearby cities.
The discrepancies in reduction rates between the two regions
were found to be less than 6 % and 7 % for monthly BC emis-
sions and annual PM2.5 concentrations, respectively, imply-
ing the similar progress of emission control and air quality
improvement. β1–β4 are the scaling factors obtained by sec-
tor in the multiple regression model and were applied to opti-
mize southern Jiangsu emissions to best match observations
for each month. ε is the error vector of the model, reflecting
the effect of background conditions (e.g., emissions outside
the third domain in CTM and emissions not included in the
a priori inventory like those from natural sources). Before
applying observations and simulated contributions by sector
in the multiple regression model, data screening was con-
ducted following these criteria: the periods’ lack of obser-
vation data, those for which the contribution of each emis-
sion sector was simulated to be smaller than zero through the
brute-force method, and those for which the sum of contri-
butions of all four sectors was larger than 100 %. The data
screening helped to reduce the uncertainty of CTM in the
multiple regression model.

As BC is not one of the six regulated air pollutants in
the NAAQS, it was a big challenge to obtain observation
data with high temporal resolution in most cities of southern

Jiangsu. For the whole year 2015, hourly ambient BC con-
centrations were available at two sites in Nanjing, the capital
of Jiangsu. As illustrated in Fig. 1, one is a suburban site lo-
cated in the Xianlin Campus of Nanjing University in north-
east Nanjing (NJU), and the other is an urban site in Jiangsu
Provincial Academy of Environmental Science (PAES). At
both sites, BC was sampled and analyzed hourly with semi-
continuous carbon analyzer (Model-4, Sunset Lab, USA).
Details of the measurement approach were described in Chen
et al. (2017). The statistics of observed ambient BC concen-
trations at the two sites are shown in Fig. S2. The annual av-
erage BC concentrations (calculated as the mean of January,
April, July and October) were 3.83 and 2.47 µg m−3 at NJU
and PAES, respectively. The hourly average BC observations
ranged 0.06–17.65 µg m−3 and 0.22–19.76 µg m−3 at NJU
and PAES, respectively. The values were similar to those ob-
served in the Guanzhong basin (0.4–23.1µg m−3), the Pearl
River Delta region (1–13 µg m−3) and the Beijing-Tianjin-
Hebei region (2–32 µg m−3) (Li et al., 2016). Much higher
BC concentrations were observed in autumn and winter at
both sites, with the monthly means at 3.96 and 5.44 µg m−3

at NJU and 3.62 and 2.80 µg m−3 at PAES, respectively.
The scaling factors derived from Eq. (1) were used to con-

strain BC emissions in southern Jiangsu in JS-prior from a
top-down perspective by assuming a near-linear relation be-
tween changes in BC concentrations and emissions:

EJS-posterior = (2)
β1Epower+β2Eindustry+β3Eresidential+β4Etransportation,

where EJS-posterior is the vector of the total BC emissions
from the top-down approach; Epower, Eindustry, Eresidential,
and Etransportation are the vectors of BC emissions from power
generation, industry, residential sources, and transportation,
respectively, in JS-prior.

2.3 Air quality simulation

We used the Models-3 Community Multi-scale Air Quality
(CMAQ) version 4.7.1 to simulate ambient BC concentra-
tions. As shown in Fig. 1, three nested domains were ap-
plied with horizontal resolutions of 27, 9, and 3 km, respec-
tively, on a Lambert Conformal Conic projection centered
at (110◦ E, 34◦ N). The mother domain (D1, 177×127 cells)
covered most parts of China and other surrounding countries.
The second domain (D2, 118× 121 cells) covered Jiangsu,
Anhui, Zhejiang, Shanghai, and parts of other provinces in
China. The third domain (D3, 133×73 cells) covered Shang-
hai, part of Anhui province and the city cluster in southern
Jiangsu. There were 27 vertical levels from the ground sur-
face up to 50 hPa on terrain-following coordinate. The simu-
lations were conducted for January, April, July and October
to represent four typical seasons in 2015. A 5-day spin-up
period of each month was applied to minimize the influence
of initial conditions in the simulations.
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Figure 1. Modeling domain and locations of two observation sites and four meteorological stations.

Meteorological fields were simulated by the Weather Re-
search and Forecasting Model (WRF) version 3.4. The
ACM2 planetary boundary layer (PBL) mixing scheme, the
carbon bond gas-phase mechanism (CB05), and the AERO5
aerosol module were adopted in the WRF/CMAQ model.
Relevant details of model configuration can be found in
Zhou et al. (2017). Statistical indicators, including averages
of simulations and observations, bias, normalized mean bias
(NMB), normalized mean error (NME), root mean squared
error (RMSE), and index of agreement (IOA) were applied
to evaluate the modeling performance of WRF (Baker et
al., 2004; Zhang et al., 2006). Ground observation data at 1
or 3 h intervals at meteorological stations, including Lukou,
Hongqiao, and Liyang stations in the third domain (labeled
in Fig. 1), were taken from the National Climatic Data Cen-
ter (NCDC). The statistical indicators for temperature at 2 m
(T2) and relative humidity at 2 m (RH2), and wind speed and
direction at 10 m (WS10 and WD10) for the 4 typical months
in 2015 are summarized in Table S4. Discrepancies between
ground observations and WRF modeling were within an ac-
ceptable range (Emery et al., 2001).

To make it applicable in our CTM, MEIC-prior was down-
scaled into grid systems of each modeling domain based on
the spatial distributions of gross domestic product (GDP, for
power generation and industrial emissions) and population
(for residential and transportation emissions) at a horizontal
resolution of 1 km×1 km. The downscaled MEIC-prior was
used for the first and second domains and the regions outside
Jiangsu of the third domain, while JS-prior was applied for
the Jiangsu region of the third domain. A brute-force method
was applied to estimate contributions to ambient BC concen-
trations by sector. Five scenarios were designed in this study:
Scenario B (the base scenario) in which emissions from all
sources in the third domain were included, and Scenarios S1,
S2, S3, and S4 in which BC emissions from power genera-
tion, industry, residential sources, and transportation in the
whole third domain were zeroed out, respectively. We com-

pared simulated BC concentrations in S1, S2, S3, and S4 with
those in Scenario B in 4 months at two sites, and the contribu-
tions from four major emission sectors to ambient BC levels
were determined as the differences in simulated concentra-
tions between Scenarios B and S1–S4.

3 Results

3.1 Bottom-up emission estimate

The total annual BC emissions of JS-prior were estimated at
26.99 Gg for the southern Jiangsu city cluster in 2015, in-
cluding 0.18 Gg from power generation, 17.67 Gg from in-
dustry, 3.80 Gg from residential sources, and 5.33 Gg from
transportation, as shown in Fig. 2. Accounting for 66 % of
total annual emissions, industry was identified as the dom-
inant contributor to BC, followed by transportation (20 %)
and residential sources (14 %). Although the policies of en-
ergy conservation and emission control have been conducted
for years, there were still a number of small facilities with
low operation temperatures and combustion efficiencies in
southern Jiangsu, leading to a large amount of BC from in-
complete combustion. When scaling emissions from 2012 to
2015, in addition, improvements in emission controls were
not taken into account, such as elevated combustion tech-
nologies and enhanced use of dust collectors. The potential
reductions in net emission factors for major factories, there-
fore, were not well quantified, and the emissions from indus-
try could be overestimated. Emissions from power genera-
tion were few, resulting from the relatively high combustion
efficiency of pulverized boilers and large penetrations and
removal rates of dust collectors. Besides the annual total, the
emissions of 4 months (January, April, July, and October)
were also estimated and limited seasonal differences were
found as shown in Fig. 2.
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Figure 2. The monthly (left axis) and annual (right axis) emissions by sector for southern Jiangsu 2015 in JS-prior and JS-posterior (unit:
Gg).

Figure S3 shows the spatial distribution of annual BC
emissions in JS-prior. For the power generation and indus-
try sectors, the latitude and longitude of each plant were ap-
plied to allocate BC emissions, and the outstandingly high
emissions shown in the map indicated the existence of big
power and industrial plants. For residential sources, large
emissions were found in the regions with intensive popula-
tion. Emissions from transportation were mainly distributed
along the road net and downtown regions in southern Jiangsu
cities (see the geographic locations of downtowns in Fig. S1),
slightly overlapping with those from residential sources.

3.2 Top-down emission estimate

The time series of BC concentrations contributed by vari-
ous sectors (c in Eq. 1) were simulated with CTM and illus-
trated in Figs. S4 and S5 for NJU and PAES, respectively.
Among all the sectors, the largest seasonal variation in BC
contribution was found for residential sources. The average
concentrations contributed by this sector in January reached
0.76 and 0.94 µg m−3 at NJU and PAES, respectively, ap-
proximately twice those in another 3 months. The concen-
trations contributed by industry were significantly enhanced
in certain periods (e.g., 20 January, 9–11 April, and 15–
17 July), and industrial emissions were expected to be an im-
portant reason for the overestimation in BC concentrations
through CTMs (see the model evaluation in Sect. 3.3). Ta-
ble S5 summarizes the monthly and annual mean BC contri-
butions by sector. The annual contributions of industry at the
two sites were close to each other (21.0 % and 21.9 % at NJU
and PAES, respectively). Contributions of residential sources
and transportation were higher at PAES, resulting from a
large population and heavy traffic in the urban area. A minor
contribution of power generation to BC concentrations was
found at both sites (the annual means were less than 1 %), at-
tributed to its very limited emissions. The total contributions
from the four sectors were larger than 50 % for all the months
and sites except for January. We assumed that the smaller
contributions in January resulted partly from the longer life-
time of BC due to less wet deposition in winter. Moreover,
we conducted the cluster analysis of back trajectories of air
masses arriving at NJU with the Hybrid Single Particle La-
grangian Integrated Trajectory (HYSPLIT, version 4) model,

and found that fewer air masses passed through the third
modeling domain in January, as illustrated in Fig. S6. The
result thus implied more contribution from regional transport
to the air quality at the site in winter compared to other sea-
sons. We acknowledged that the multiple regression model
was less effective in identifying the sources of BC in win-
ter by constraining the emissions in the southern Jiangsu city
cluster alone.

Summarized in Table 1 are the scaling factors β1–β4 esti-
mated from the multiple regression model (Eq. 1) by season,
together with the statistical indicators, including the values of
t , Sig. (or p), and the variance inflation factor (VIF). The val-
ues of t and Sig. indicate statistical significance with thresh-
olds of 2 and 0.05, respectively. The VIF is a test for multi-
collinearity and the model is reasonable when VIF values in
the table are much smaller than 10. Since the emissions from
power generation were small and they contributed very little
to ambient BC concentrations, inclusion of the power gener-
ation component would not significantly improve the regres-
sion model. In this study, therefore, we assumed that the sim-
ulated BC concentrations from power generation were cor-
rect by setting β1 at 1, and we further subtracted them from
the observations. Most statistical indicators in Table 1 met
the criteria (t > 2, Sig.< 0.05, VIF< 10) and the overall sig-
nificance was 0.00 in 4 months, implying acceptable robust-
ness of the multiple regression model. However, the results
were not statistically significant, indicated by t and Sig. val-
ues for some months and sectors (e.g., industry in April and
October and residential in April and July), implying that the
constrained emissions for those months/sectors need to be
cautiously analyzed.

By applying β1–β4 in Eq. (2), the top-down estimates of
BC emissions (JS-posterior) were estimated and illustrated
in Fig. 2. The total BC emissions for the southern Jiangsu
city cluster were calculated at 13.4 Gg, 50 % smaller than
those of JS-prior. For the capital city of Jiangsu province,
Nanjing, Huang et al. (2019) conducted a detailed analy-
sis of the changes in operation activities and emission con-
trol technologies of individual sources based on annually up-
dated official environmental statistics and pollution census.
With the bottom-up approach, the annual BC emissions in
the city were estimated to decrease by 60 % from 2012 to
2015 as shown in Fig. S7. The relative change in annual
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Table 1. The scaling factors and statistical indicators from the multiple regression model for estimation of JS-posterior.

Month Sector Scaling factor ta Sig.b VIFc Sig.d

January
Industry (β2) 0.42 2.65 0.01 1.76

0.00Residential (β3) 1.31 3.67 0.00 2.37
Transportation (β4) 0.79 2.23 0.03 2.72

April
Industry (β2) 0.22 0.96 0.34 2.65

0.00Residential (β3) 0.58 1.63 0.11 4.62
Transportation (β4) 0.67 2.21 0.03 4.19

July
Industry (β2) 0.35 3.09 0.00 2.09

0.00Residential (β3) 0.39 0.95 0.34 2.95
Transportation (β4) 0.55 2.20 0.03 3.46

October
Industry (β2) 0.34 1.92 0.06 1.53

0.00Residential (β3) 1.52 4.12 0.00 2.20
Transportation (β4) 0.74 2.80 0.01 2.65

Note: the criteria for the statistical significance of the model: a t > 2, b Sig.< 0.05, and c VIF< 10, and
d the overall significance< 0.05.

emissions (60 %) was close to that between JS-prior and JS-
posterior (50 %), implying the constraining approach in this
work could capture the changes in emissions due to improved
control measures.

The scaling factors of emissions from industry and trans-
portation (β2 and β4) ranged from 0.22 to 0.42 and from 0.55
to 0.79 for different months, respectively. Accordingly, the
emissions from industry and transportation in JS-posterior
were estimated to be 67 % and 32 % smaller than those in
JS-prior, respectively. As mentioned above, the emissions
in JS-prior in 2015 were simply scaled from those in 2012
according to activity data, and changes in emission factors
were not considered. In actual fact, however, a series of mea-
sures in industry and transportation were conducted to im-
prove energy efficiency and to reduce emissions over recent
years. Issued in 2013, for example, the Air Pollution Control
Planning for the Key Regions for the 12th Five-Year Plan
period (2010–2015) aimed to achieve 7 % and 15 % reduc-
tions in the annual average concentration and industrial emis-
sions of fine particles in Jiangsu province from 2010 to 2015,
respectively (Qian, 2013). The measures included eliminat-
ing old and energy-inefficient plants of heavy-polluted in-
dustries (thermal power generation and steel/building mate-
rial production), and optimizing the energy structure through
application of sustainable energy. Meanwhile, the enhanced
use of cleaner gasoline and diesel products (National Stan-
dard Stage V) in transportation could lead to reduced ve-
hicle emissions. The government efforts in emission con-
trols proved effective, indicated by the scaling factors much
smaller than 1 (β2 and β4 in Table 1) and the reduced emis-
sions of JS-posterior. For residential sources, the emissions in
JS-posterior were 3 % smaller than those in JS-prior, indicat-
ing a limited difference in the annual total emissions between
the two inventories. However, the scaling factors (β3) in Jan-

uary and October were 1.31 and 1.52, respectively, showing
a stronger enhancement in BC emissions in winter and au-
tumn in JS-posterior than those in JS-prior. It thus implied
that there were missing sources likely associated with low-
quality fossil fuels or biofuel used for heating in winter and
crop waste burning in autumn in JS-prior.

Figure S8 presents the seasonal variations in BC emis-
sions of JS-prior, JS-posterior, and MEIC-prior by sector, and
stronger variations were generally found in JS-posterior. As
shown in Fig. S8a, the largest difference among the three in-
ventories existed in the residential sources, and the ratio of
maximum to minimum monthly emissions was 4.33 in JS-
posterior, close to that in MEIC-prior at 4.00 and nearly 4
times that in JS-prior at 1.13. The ratios of maximum to min-
imum monthly emissions were 1.13, 1.83, and 1.29 for JS-
prior, JS-posterior, and MEIC-prior, respectively (Fig. S8b).
The value for JS-posterior was closer to 2.1 for an anthro-
pogenic BC emission inventory in China by Lu et al. (2011)
that considered enhanced use of fossil fuels for residential
heating in winter in northern China. The comparison thus
implied again that current bottom-up inventories might un-
derestimate the emissions of residential solid fuel burning
in winter in southern Jiangsu. As central household heating
was not conducted in the area in winter, the official energy
statistics on which bottom-up inventories were based may
not fully capture the elevated fuel burning by disperse house-
holds. Spatial distribution of BC emissions in JS-posterior
was illustrated in Fig. S3. Compared to JS-prior, BC emis-
sions from industry and transportation were greatly reduced
in downtown regions in the southern Jiangsu city cluster.
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Figure 3. The observed and simulated hourly BC concentrations
at NJU using JS-prior and JS-posterior for January (a), April (b),
July (c), and October (d) in 2015 (unit: µg m−3).

Figure 4. The same as Fig. 3 but at PAES (unit: µg m−3).
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3.3 Evaluation of the top-down emission estimate

The simulated BC concentrations based on bottom-up (JS-
prior) and top-down estimation in emissions (JS-posterior)
were compared with observations to evaluate the two inven-
tories, and the results were illustrated in Figs. 3 and 4 for NJU
and PAES, respectively. Statistical indicators including mean
concentrations from simulations and observations, NMB and
NME, as well as the regression correlation (R) were calcu-
lated to evaluate the modeling performance, as summarized
in Table 2.

In general, CTM based on JS-prior reproduced well the
temporal variations of the observed BC concentrations at the
two sites. The highest and lowest concentrations were, re-
spectively, simulated in winter and summer, consistent with
observations with an exception at PAES where the observed
monthly mean in January (2.80 µg m−3) was lower than that
in October (3.62 µg m−3). The overestimation in January at
PAES (especially in middle and late 16–26 January) might
result partly from the emission control policy implemented
for the National Memorial Day of Nanjing Massacre Victims
on 13 December 2014. During the period, Nanjing under-
took a series of stringent restrictions on air pollutant emis-
sions. For example, key petrochemical and steel industries
were shut down, and all the high-pollution vehicles were
forbidden from driving into the city. Those restrictions had
large impacts on emissions and thereby air quality in the
following month at PAES, but were not fully considered in
current emission inventories. Moreover, the bias could be
enhanced under certain meteorology conditions. As illus-
trated in Fig. S9, higher daily average PBL height at PAES
was found for periods when the simulated concentrations
were relatively lower (e.g., 6–7, 12–15, and 28–31 January),
resulting in smaller bias between simulation and observa-
tion. In contrast, the lower PBL height found in other peri-
ods would exaggerate the overestimation in simulated con-
centrations, given the elevated emissions in JS-prior. The
seasonal variation of BC concentrations at NJU was larger
than that at PAES, suggesting a bigger impact of household
solid fuel use on the suburban and rural regions. Though the
model was able to capture the seasonal variability, discrep-
ancies between simulations and observations existed, and
CTM generally underestimated BC concentrations at subur-
ban site NJU and overestimated those at urban site PAES.
With the monthly means ranging from 1.99 to 5.97 µg m−3

at NJU, the annual average BC concentration (calculated as
the mean of January, April, July, and October) was simu-
lated at 3.44 µg m−3, smaller than the observed 3.83 µg m−3.
With the monthly means ranging from 2.61 to 6.46 µg m−3,
in contrast, the annual concentration at PAES was simulated
at 3.39 µg m−3, larger than the observed 2.48 µg m−3. Better
correlation between observation and simulation was found
at NJU, indicated by the larger R. The annual mean NMBs
were calculated at −10.16 % and 36.67 %, and the NMEs
were 41.15 % and 72.00 % at NJU and PAES, respectively. Ta
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The discrepancy suggested that JS-prior used in CTM might
misrepresent the spatial pattern of emissions. Population and
economy densities were applied to allocate BC emissions,
leading to overestimation in emissions and thereby simulated
concentrations in urban areas with more population and eco-
nomic activity. Besides, the model overestimated the peak
surface concentrations at both sites particularly when the
contribution from the industry sector was enhanced as men-
tioned in Sect. 3.2 (e.g., 9–11 January and 9–10 April at NJU,
and 9–12 April, the second half of July, and 20 October at
PAES).

Application of JS-posterior in CTM effectively corrected
large biases between simulations and observations at the
two sites. As shown in Table 2, NMEs were reduced for
most months (all months at PAES and January and April at
NJU) while effects of applying JS-posterior in CTM varied at
two sites. At PAES, the annual average NME declined from
72.00 % to 57.55 % and the annual mean of BC concentra-
tion was simulated at 2.57 µg m−3, in better agreement with
the observed 2.48 µg m−3 than the simulated 3.39 µg m−3 us-
ing JS-prior. The largest reductions in NMEs were found in
April and July, from 73.18 % to 42.87 % and from 92.74 % to
42.37 %, respectively. Moreover the overestimations in peak
concentrations using JS-prior were partly corrected when JS-
posterior was applied, resulting mainly from the reduced
emissions from industry and transportation. Regarding the
overestimation in 16–26 January discussed above, we ex-
cluded the data points for those dates and re-compared the
observation and simulation. As can be seen in Table S6, the
overestimation in CTM was largely reduced and the top-
down estimate corrected the bias moderately in January at
PAES. Besides the emissions, overestimation in annual BC
concentration at PAES could result partly from the uncer-
tainty in PBL modeling (Liu et al., 2018). As shown in Ta-
ble S7, the monthly PBL heights in WRF were generally
lower than those in actual atmosphere, leading to enhanced
BC concentrations.

Although simulations of peak concentrations at NJU were
improved as well, the annual average NME at NJU slightly
increased from 41.15 % to 44.16 % and the annual mean of
BC concentration was simulated at 2.82 µg m−3, smaller than
the simulated 3.44 µg m−3 using JS-prior. Bigger bias was
found in July and October at NJU, since the reduced emis-
sion estimates in JS-posterior led to further underestimation
in simulated ambient BC levels compared to JS-prior. Limi-
tation of the current multiple regression model thus indicated
that overestimation and underestimation in concentrations at
different sites could hardly be corrected simultaneously with-
out further improvement in spatial distribution of emissions.

4 Discussions

We selected April to evaluate the sensitivity of observation
and bottom-up emission input to top-down constraint. Obser-
vation site number, spatial representativeness of sites, and the
a priori bottom-up inventory were changed separately in the
constraining approach, and various top-down estimates could
be derived and compared with each other. Furthermore, we
evaluated the uncertainty of the multiple regression model,
including the assumption of near linearity between emissions
and concentrations in July and October and the impact of
precipitation in July. The statistical indicators of modeling
performances based on different cases are summarized in Ta-
ble 3. Details were described as below.

4.1 The effect of observation data application

A major challenge in understanding the sources and distribu-
tions of BC in China was the lack of a consistent and stable
measurement network with good spatiotemporal coverage,
such as the IMPROVE network in the United States (Malm
et al., 1994). Uncertainty existed in the top-down estimates
in this work, as hourly measurements of BC concentrations
were only available at two sites in southern Jiangsu. There-
fore, besides JS-posterior derived from observations at both
sites in April as described in Sect. 3.2 (mentioned as Case 1
hereinafter), we conducted a Case 2 in which observation
data at only one site (NJU) were used in the top-down ap-
proach, to analyze the effect of the site number on emission
estimates.

The scaling factors of emissions from industry, residen-
tial sources and transportation were recalculated at 0.42, 0.95
and 0.65, respectively. Compared to JS-prior in April in Ta-
ble 2, the NMEs of Case 2 in Table 3 decreased from 42.31 %
to 32.47 % and from 73.18 % to 61.59 % at NJU and PAES,
respectively, implying the benefits of ground measurements
(even available only at one site) on emission constraint. The
NME in Case 2 was slightly smaller than that in Case 1
at NJU, suggesting that application of measurement data at
one single site could improve modeling performance mod-
erately at that site. At PAES, in contrast, much larger NME
was found in Case 2. Much better modeling performance in
Case 1 at PAES indicated that inclusion of more measure-
ments with better spatiotemporal coverage could constrain
BC emissions at the city cluster level more effectively. It
should be noted that the number of data included in the multi-
ple regression model was 48 % of those for the whole period
with the data screening mentioned in Sect. 2.2. In particu-
lar, the period lack of observation accounted for 38 % of the
whole month. We further analyzed the CTM performances
for the periods included in the model and those excluded
from the model separately, as shown in Table S8. The ob-
served concentration for the periods included in the model
(2.56 µg m−3) was smaller than the simulated in JS-prior
(2.71 µg m−3), leading to the reduced emissions through con-
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Table 3. Statistical indicators for observed and simulated BC concentrations in different cases at NJU and PAES (Cases 1–5 for April and
Cases 6–7 for July).

Site Parameter Case1 Case2 Case3 Case4 Case5 Case 6 Case 7

NJU

Average SIM (µg m−3) 1.82 2.27 2.06 2.49 1.78 1.40 1.41
Average OBS (µg m−3) 2.69 2.69 2.69 2.69 2.69 2.65 2.65
NMB (%) −32.40 −21.59 −23.50 −7.46 −33.95 −47.41 −46.72
NME (%) 38.61 32.47 32.64 41.58 38.94 54.88 54.44
R 0.43 0.49 0.49 0.40 0.46 0.33 0.33

PAES

Average SIM (µg m−3) 1.95 2.45 2.01 5.13 2.29 1.76 1.76
Average OBS (µg m−3) 1.70 1.70 1.70 1.70 1.70 1.51 1.51
NMB (%) 14.73 49.86 18.02 201.35 34.71 16.87 16.65
NME (%) 42.87 61.59 39.62 201.56 47.73 44.46 42.71
R 0.53 0.63 0.66 0.65 0.59 0.36 0.39

Note: Case 1 applied observations at two sites to constrain the emissions from the whole city cluster (JS-posterior); Case 2 applied observations
at only one site (NJU) to constrain the whole city cluster; Case 3 applied observations at two sites to constrain emissions from different cities,
respectively; Case 4 applied MEIC-prior; Case 5 applied MEIC-posterior; Case 6 excluded the data influenced by simulated wet deposition; and
Case 7 excluded the data influenced by satellite-derived accumulative precipitation.

straining. The constrained emissions resulted in a simulated
concentration (2.42 µg m−3) closer to the observation for the
periods included in the multiple regression model, and did
not increase the bias for the periods excluded from the model.
It suggested that factors other than emissions in CTM (e.g.,
meteorology) might contribute to the underestimation for the
latter.

Besides the number of observation sites, spatial represen-
tativeness was also identified and its impact on top-down
emission constraint was evaluated. Considering the prevail-
ing winds from northeast and southeast, on the one hand,
NJU located upwind of Nanjing is hardly influenced by
the emissions from the downtown of the city. Besides, the
site is downwind of the YRD, including the Suzhou–Wuxi–
Changzhou–Zhenjiang city cluster (Chen et al., 2017), and
thus it is more representative of the western YRD emissions
through regional transport. On the other hand, PAES is lo-
cated in urban Nanjing and its air quality is commonly influ-
enced by surrounding transportation, residential, and com-
mercial sources; thus, the site is representative of the local
emissions of Nanjing. In contrast to previous top-down stud-
ies that did not distinguish the influence of local emissions
and transport on air quality in sub-regions of the research
domain (Wang et al., 2011; Fu et al., 2012), the spatial rep-
resentativeness of the two observation sites were taken into
account to improve the top-down approach and the result of
constraining BC emissions in the southern Jiangsu city clus-
ter. Through the brute-force method described in Sect. 2.3,
we zeroed out the emissions from Nanjing and the Suzhou–
Wuxi–Changzhou–Zhenjiang city cluster in CTM, respec-
tively, and compared the simulated concentrations with those
in Scenario B to analyze the contributions of the two regions
to ambient BC concentrations at NJU and PAES. As shown
in Fig. S10, the contribution of emissions from Nanjing to
PAES was greater than that to NJU in 82 % of the modeling

Table 4. The scaling factors and statistical indicators from the mul-
tiple regression model in Case 3.

Scaling
Site Sector factor t Sig. VIF

NJU
Industry (β2) 0.42 1.71 0.09 2.03
Residential (β3) 0.95 2.50 0.01 2.52
Transportation (β4) 0.65 2.13 0.03 2.66

PAES
Industry (β2) 0.19 3.46 0.00 1.44
Residential (β3) 0.36 1.89 0.06 1.44
Transportation (β4) 0.65 – – –

period, and the analog number was 81 % for the contribu-
tion of the Suzhou–Wuxi–Changzhou–Zhenjiang city cluster
to NJU greater than that to PAES. We thus concluded that
emissions from Nanjing contributed significantly to PAES,
while those from the Suzhou–Wuxi–Changzhou–Zhenjiang
city cluster contributed significantly to NJU. We then devel-
oped a new case of top-down emission estimate in south-
ern Jiangsu (Case 3), in which observation data at PAES
and NJU were applied to constrain emissions from Nan-
jing and the Suzhou–Wuxi–Changzhou–Zhenjiang city clus-
ter, respectively.

The scaling factors in Case 3 are provided in Table 4. To
avoid the collinearity in the multiple regression model, we
expected that the relative changes in emissions from trans-
portation in Nanjing and the Suzhou–Wuxi–Changzhou–
Zhenjiang city cluster were similar for recent years, resulting
from the same progress of emission standard implementation
(National Standard Stage IV) in southern Jiangsu and the fre-
quent circulation of vehicles among the cities. Therefore the
same scaling factor was assumed for transportation in the two
regions. As shown in Table 4, all the scaling factors at PAES
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Figure 5. BC emission estimates by source of JS-prior, MEIC-prior,
JS-posterior, and MEIC-posterior in April 2015 in southern Jiangsu
(unit: Gg).

were smaller than those at NJU, implying that implementa-
tion of emission controls in Nanjing was more stringent than
that in the Suzhou–Wuxi–Changzhou–Zhenjiang city cluster
from 2012 to 2015. As the host city of the 2nd Asian Youth
Games in 2013 and the 2nd Youth Olympic Games in 2014,
Nanjing undertook a series of restrictions on air pollutant
emissions. The city had conducted emission control action on
small coal-fired boilers since 2013 and over 1200 coal-fired
boilers had been shut down by the end of 2014. In addition,
central heating units were largely applied to replace the coal
with electricity, natural gas, or biofuel. As shown in Table 3,
the NMEs in Case 3 were the smallest at both sites among all
the cases, with an exception: the NME at NJU in Case 3 was
32.64 %, slightly larger than that in Case 2 at 32.47 %. The
result implied that inclusion of more measurement data with
their spatial representativeness considered could improve the
top-down approach in terms of spatial distribution of emis-
sions and could reduce the deviation between observations
and simulations.

Summarized in Table S9 are BC emissions from Nan-
jing and the Suzhou–Wuxi–Changzhou–Zhenjiang city clus-
ter estimated in different cases. All the top-down estimates
were approximately half of the bottom-up estimate and the
estimate in Case 1 was the smallest among all the cases. The
same scaling factors were generated and applied in Cases 2
and 3 to calculate BC emissions from the Suzhou–Wuxi–
Changzhou–Zhenjiang city cluster which accounted for 80 %
of the total emissions in southern Jiangsu, resulting in similar
top-down emission estimates between the two cases.

4.2 The effect of the a priori bottom-up emission input

Given the large uncertainty in JS-prior that was simply devel-
oped based on the changes in activity levels in recent years,
we applied MEIC-prior as well to explore the effect of the a
priori emission inventory on top-down BC constraints.

Figures 5 and 6a compare the total amount and spatial dis-
tribution of emissions between JS-prior and MEIC-prior in
April for southern Jiangsu, respectively. The total BC emis-
sions in JS-prior were 21 % lower than those in MEIC-prior.
In JS-prior, as shown in Fig. 6a, the emissions from some

Figure 6. The spatial distributions of the deviations (JS-MEIC, unit:
Mg) between JS-prior and MEIC-prior (a) and those between JS-
posterior and MEIC-posterior (b).

industrial plants were extremely larger than those in MEIC-
prior, while the emissions in urban areas were found to be
smaller. Both inventories indicated extremely small contribu-
tion from power generation. BC emissions from the industry
sector were calculated at 1.34 Gg in JS-prior, 0.22 Gg smaller
than MEIC-prior. Emissions from industry in MEIC-prior
were calculated based on the regional average of emission
factors and allocated according to the spatial distribution of
GDP. The method would possibly result in underestimation
in emissions from big industrial plants but overestimation in
urban areas. Emissions from residential sources in JS-prior
were close to those in MEIC-prior, as a similar methodol-
ogy was applied for the sector in the two inventories. BC
emissions from transportation in MEIC-prior (0.85 Gg) were
twice those in JS-prior (0.42 Gg), attributable probably to the
application of different emission factors. For on-road trans-
portation, the emission factors in JS-prior were calculated
with the CORPERT model (EEA, 2012; Zhou et al., 2017),
while they were obtained from available domestic measure-
ments in MEIC-prior.

Simulation Case 4 was determined using MEIC-prior
in CTM. Following the top-down approach described in
Sect. 2.2, we developed Case 5, using MEIC-prior instead
of JS-prior as the a priori input of emission data in CTM.
The scaling factors of emissions from industry, residential

Atmos. Chem. Phys., 19, 2095–2113, 2019 www.atmos-chem-phys.net/19/2095/2019/



X. Zhao et al.: Top-down estimate of black carbon emissions (Jiangsu, China) 2107

sources, and transportation were, respectively, calculated at
0.15, 1.30, and 0.25 through the multiple regression model,
and the top-down estimates in BC emissions (mentioned
as MEIC-posterior hereafter) were calculated at 0.75 Gg in
April 2015, close to 0.78 Gg in JS-posterior (Fig. 5). The
differences in the emissions from industry and transporta-
tion between JS-posterior and MEIC-posterior were 0.06
and 0.07 Gg, respectively, much smaller than those between
JS-prior and MEIC-prior. Besides the total amount, differ-
ences in spatial distribution in industry plants and urban ar-
eas between the top-down estimates (JS-posterior and MEIC-
posterior) were also significantly reduced compared to those
between bottom-up estimates (JS-prior and MEIC-prior), as
shown in Fig. 6b.

As shown in Table 3, the monthly average BC concen-
tration at NJU in Case 4 was simulated at 2.49 µg m−3 for
April 2015, close to the 2.38 µg m−3 simulated with JS-prior
in Table 2. At PAES, however, application of MEIC-prior
in CTM resulted in a much larger concentration than JS-
prior (5.13 vs. 2.98 µg m−3), indicating again that MEIC-
prior would overestimate the emissions in urban areas. Fig-
ure 7 illustrates the scatter plots of the simulated BC con-
centrations from bottom-up and top-down inventories at NJU
(Fig. 7a) and PAES (Fig. 7b). Using two bottom-up invento-
ries in CTM, a bigger difference in simulated BC concentra-
tions was found at PAES compared to that at NJU, indicated
by the slope (1.10) closer to 1 at NJU in Fig. 7a. The correla-
tion coefficients (R2) between simulated BC concentrations
using JS-prior and MEIC-prior were 0.81 at NJU and 0.40
at PAES, respectively. Using two top-down estimates, the
difference between simulated concentrations at PAES was
significantly reduced and the slope got much closer to 1 in
Fig. 7b. The correlation coefficients (R2) were enhanced to
0.94 and 0.87 at NJU and PAES, respectively.

To summarize, similar results from the top-down con-
straint approach could be obtained in emission level, spatial
distribution, and CTM performance; even clear differences
existed in the a priori bottom-up inventories. In other words,
a limited effect of the a priori emission input was evalu-
ated on the top-down estimate from the multiple regression
model.

4.3 Evaluation of the near-linearity assumption in the
multiple regression model

As mentioned in Sect. 2.2, the assumption of near linear-
ity between emissions and concentrations is a principle of
the multiple regression model, given the weak chemistry re-
activity of BC. The principle has been applied in previous
studies to constrain BC emissions (Fu et al., 2012; Kondo et
al., 2011; Wang et al., 2013; Park et al., 2003; Verma et al.,
2017). In actual fact, however, processes other than chemi-
cal reaction, e.g., precipitation or wet deposition, impact the
linearity. Therefore, the near-linear assumption needs to be

Figure 7. The scatter plots of the simulated BC concentrations using
JS inventories vs. those using MEIC at NJU (a) and PAES (b).

justified, and the uncertainty of the methodology could then
be evaluated.

Sensitivity analysis was conducted to assess the rational-
ity of the brute-force method described in Sect. 2.3, in which
emissions of a given sector were zeroed out to determine
their contribution to the ambient concentrations. As sum-
marized in Table S10, we calculated the ratio of simulated
wet deposition to emissions by month for NJU, PAES, and
the whole southern Jiangsu city cluster with JS-prior and
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JS-posterior, respectively. July and October were identified
as the months with the most and least impact from precip-
itation, suggested by the largest and smallest ratios, respec-
tively. Two sensitivity simulations were then conducted for
the selected 2 months, in which doubled and halved emis-
sions (i.e., 200 % and 50 % of emissions in JS-prior, respec-
tively) were used in CTM, and the simulated concentrations
were then compared to those with JS-prior at NJU and PAES,
as shown in Figs. S11 and S12, respectively. It suggested that
the impact of nonlinearity between emissions and concentra-
tions was limited, no matter whether the precipitation was
strong or not. As the top-down constrained emissions (JS-
posterior) were 50 % smaller than the bottom-up estimates
(JS-prior), the relative change was far beyond the uncertainty
from nonlinearity (±10 %, as discussed in Fig. S12), imply-
ing the improvement of the top-down approach on emission
estimation.

Many studies have reported the difficulty in precipitation
simulation with WRF (Annor et al., 2017; Liu et al., 2018;
Yu et al., 2011; Yang et al., 2014; Kaewmesri, 2018). In this
study, the observed ground precipitation at Lukou, Liyang
and Shanghai stations (see Fig. 1 for locations) was com-
pared with the simulated one to evaluate the WRF perfor-
mance for precipitation modeling. As shown in Figs. S13–
S16, the model generally overestimated the amount. Simi-
lar results were found in previous studies that WRF overes-
timated precipitation at fine spatial resolution (Politi et al.,
2018; Kotlarski et al., 2014; García-Díez et al., 2015). Im-
provement in physics parameterization schemes in WRF will
help better understand the wet deposition of BC through
simulation. To further evaluate the effect of wet deposition
on emission constraining, we conducted an extra Case 6, in
which the data influenced by simulated wet deposition (i.e.,
the periods with simulated wet deposition at hourly basis)
were excluded in the top-down approach. The new scaling
factors β ′1–β ′4 estimated from the multiple regression model
were summarized in Table 5. By applying β ′1–β ′4 in Eq. (2),
the top-down estimates of annual BC emissions in Case 6
were calculated at 13.7 Gg, and the emissions by sector and
month were illustrated in Table 6, together with the rela-
tive deviation (RD) compared to emissions in JS-posterior.
The relative deviations of monthly total emissions between
Case 6 and JS-posterior were less than 5 %, with an excep-
tion of July at 14 %, and that for annual total was 2.6 %.
Larger relative deviations were found for given sources, e.g.,
residential in January and transportation in July. The devi-
ations, therefore, were much smaller than that between the
emissions in JS-prior and JS-posterior. We consequently ap-
plied CTM to evaluate the modeling performance with the
emissions in Case 6 for July. Illustrated in Table 3 were
the simulated BC concentrations and the statistic indicators
obtained through comparisons with observation at the two
sites. As suggested by the NME and R values, little improve-
ment on CTM performance was achieved with the emissions
in Case 6, compared to those with JS-posterior (Table 2).

Figure 8. The1BC/1CO ratio at NJU (a) and PAES (b) separated
by different accumulated precipitation along the back trajectories
during 48 h. The data point number of each accumulated precipita-
tion interval (right axis) is also given.

The impact of simulated wet deposition on the top-down ap-
proach was thus expected to be moderate in this work.

As the simulated wet deposition varied from the reality to
some extent and the impact of precipitation along the trans-
port was not excluded in Case 6, we selected July to conduct
a Case 7, in which the data influenced by accumulative pre-
cipitation along the back trajectories at the two sites were
excluded in the multiple regression model. The merged high-
quality precipitation measured by the Tropical Rainfall Mea-
suring Mission (TRMM) satellite instrument was adopted for
wet deposition screening, with a temporal resolution of 3 h
and a spatial resolution of 0.25◦× 0.25◦. We used the HYS-
PLIT (version 4.9) model (http://www.ready.noaa.gov, last
access: 12 February 2019) to calculate the 48 h back trajec-
tories of the air masses arriving at NJU and PAES. The back
trajectories were calculated every 3 h for July with the sim-
ulated layer heights of 50, 100, and 500 m above the ground
and the time step of 3 h (the same as the temporal resolu-
tion of TRMM). The hourly accumulative precipitation along
the 48 h back trajectories at two sites was then calculated
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Table 5. The scaling factors and statistical indicators from the multiple regression model in Cases 6 and 7.

Month Sector Scaling factor t Sig. VIF Sig.

Case 6

January
Industry (β ′2) 0.41 2.17 0.03 1.71

0.00Residential (β ′3) 1.53 3.48 0.00 2.29
Transportation (β ′4) 0.73 1.65 0.10 2.66

April
Industry (β ′2) 0.24 0.92 0.36 1.91

0.00Residential (β ′3) 0.51 1.32 0.19 3.29
Transportation (β ′4) 0.70 2.12 0.03 3.03

July
Industry (β ′2) 0.38 4.43 0.00 1.43

0.00Residential (β ′3) 0.34 0.82 0.41 2.52
Transportation (β ′4) 0.74 3.55 0.00 2.25

October
Industry (β ′2) 0.33 1.00 0.32 1.44

0.00Residential (β ′3) 1.36 2.61 0.01 1.86
Transportation (β ′4) 0.72 1.89 0.06 2.02

Case 7 July
Industry (β ′2) 0.38 2.38 0.02 1.31
Residential (β ′3) 0.31 0.31 0.75 2.31 0.00
Transportation (β ′4) 0.75 1.8 0.07 1.95

Table 6. The monthly and annual emissions by sector for southern Jiangsu 2015 in Cases 6 and 7 (unit: Gg) and the relative deviation
compared to JS-posterior (RD: Case 6 or 7–JS-posterior) / JS-posterior, %).

January April July October Annual July

Case 6 RD Case 6 RD Case 6 RD Case 6 RD Case 6 RD Case 7 RD

Power 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Industry 0.6 −2.4 0.3 9.9 0.6 9.2 0.5 −0.3 6.0 3.1 0.5 9.5
Residential 0.5 16.7 0.2 −13.1 0.1 −13.7 0.4 −10.2 3.6 −0.6 0.1 −20.6
Transportation 0.3 −8.2 0.3 4.3 0.4 34.4 0.3 −3.0 3.9 5.4 0.4 36.4
Sum 1.4 2.4 0.8 2.3 1.1 13.6 1.2 −4.2 13.5 2.6 1.0 13.4

to determine the BC–CO data pairs influenced by precipi-
tation, given the low effect of precipitation on CO. Figure 8
illustrates the changes in the 1BC/1CO ratio observed at
two sites for different accumulated precipitation intervals.
At NJU, the 1BC/1CO ratio of air masses receiving less
than 3 mm accumulated precipitation was significantly larger
than that of air masses receiving more than 3 mm, and the
analogue number was 5 mm at PAES. In Case 7, therefore,
we excluded the BC–CO data pairs receiving more than 3
and 5 mm accumulated precipitation along their trajectories
within the last 48 h at NJU and PAES, respectively, in the
multiple regression model. It minimized the effect of wet de-
position while retaining sufficient data points for the statisti-
cal significance. Figure 9 shows the simulated wet deposition
in Case 6 and the accumulated precipitation in Case 7 for July
to compare the data selection in the two cases. In Case 6, the
number of data points were reduced to 65 % of Case 1 after
data screening, and over 500 samples at the two sites were
available for the multiple regression model. In Case 7, only
31 % of data points remained. The periods excluded in Case 7

contained those in Case 6, implying a stricter data screening
to eliminate the effect of precipitation.

Table 5 shows the scaling factors estimated from the mul-
tiple regression model in Case 7, and no big changes were
found compared to the scaling factors for July in Case 6.
Consequently, the emissions by sector and total emissions
in Case 7 were close to those in Case 6 (Table 6). The rela-
tive deviation of total emissions in July between Case 7 and
JS-posterior (RD in Table 6) was 13 %, and those for resi-
dential and transportation were larger. The influence of pre-
cipitation was again indicated modest, as the deviation was
much smaller than that between the estimates obtained from
the bottom-up and top-down methods. Moreover, the CTM
performance based on Case 7, indicated by NMB and NME,
was found to be similar to that based on Case 6, implying the
small effect of precipitation screening on simulation. Even
excluding the influence of precipitation along the back tra-
jectories, the Sig. for residential sources in Case 7 was still
much larger than 0.05 (Table 5), suggesting more efforts on
quantification of emissions for this highly uncertain source
category.
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Figure 9. The wet deposition in Case 6 (right axis, unit: kg ha−1)
and accumulated precipitation in Case 7 (left axis, mm) at NJU (a)
and PAES (b). The number of remaining data points is also given.

5 Conclusions

Monthly top-down estimates of BC emissions were derived
from a multiple regression model that integrated CTM and
hourly BC concentrations from two ground observation sites
in the southern Jiangsu city cluster. The annual emissions
from the top-down approach (JS-posterior) were estimated at
13.4 Gg for 2015, 50.3 % smaller than those in the bottom-
up emission inventory that did not include the improved
emission controls in recent years (JS-prior), implying the
effectiveness of air pollution prevention measures on emis-
sion abatement. Application of JS-posterior in CTM reduced
the deviations between simulations and observations at two
ground sites effectively, especially at urban site PAES. The
increased bias at NJU in certain months reflected the limi-
tation of the top-down estimate. To evaluate the effects of
observation data on top-down estimates, two more cases in
which observation data of only one site (NJU) and observa-
tion data at both sites with their spatial representativeness
differentiated were applied to constrain the emissions, re-
spectively. The best CTM performance was found for the
third case, indicating that inclusion of more ground measure-
ments with better spatiotemporal coverage in the city clus-
ter would improve the understanding of spatial distributions
of BC emissions. In addition, top-down estimates were de-
rived from various bottom-up inventories, and the differences

in emission amount, spatial distribution, and CTM perfor-
mance between the constrained emission estimates were sig-
nificantly reduced compared to those between the bottom-up
inventories. The results implied that changes in the a priori
emission input in the regression model and CTM had a lim-
ited effect on the top-down estimation. Finally, the assump-
tion of near-linearity between emissions and concentrations
was justified, and the influence of wet deposition on the es-
timated emissions was evaluated to be moderate. This work
demonstrated that the top-down approach based on ground
observations and CTM could capture the fast changes in BC
emissions attributed to tightened pollution control policy at a
city cluster scale. To further reduce the uncertainty of the ap-
proach and apply the method to other regions, more ground
measurements with sufficient temporal resolution would be
recommended.
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