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� Uncertainty of industrial emission inventories was analyzed at varied spatial scales.
� Uncertainty of total emissions was not largely reduced at small scale except for SO2.
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� PM emissions at provincial level were estimated larger than those at national level.
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a b s t r a c t

A comprehensive uncertainty analysis was conducted on emission inventories for industrial sources at
national (China), provincial (Jiangsu), and city (Nanjing) scales for 2012. Based on various methods and
data sources, Monte-Carlo simulation was applied at sector level for national inventory, and at plant level
(whenever possible) for provincial and city inventories. The uncertainties of national inventory were
estimated at �17e37% (expressed as 95% confidence intervals, CIs), �21e35%, �19e34%, �29e40%, �22
e47%, �21e54%, �33e84%, and �32e92% for SO2, NOX, CO, TSP (total suspended particles), PM10, PM2.5,
black carbon (BC), and organic carbon (OC) emissions respectively for the whole country. At provincial
and city levels, the uncertainties of corresponding pollutant emissions were estimated at �15e18%, �18
e33%, �16e37%, �20e30%, �23e45%, �26e50%, �33e79%, and �33e71% for Jiangsu, and �17
e22%, �10e33%, �23e75%, �19e36%, �23e41%, �28e48%, �45e82%, and �34e96% for Nanjing,
respectively. Emission factors (or associated parameters) were identified as the biggest contributors to
the uncertainties of emissions for most source categories except iron & steel production in the national
inventory. Compared to national one, uncertainties of total emissions in the provincial and city-scale
inventories were not significantly reduced for most species with an exception of SO2. For power and
other industrial boilers, the uncertainties were reduced, and the plant-specific parameters played more
important roles to the uncertainties. Much larger PM10 and PM2.5 emissions for Jiangsu were estimated in
this provincial inventory than other studies, implying the big discrepancies on data sources of emission
factors and activity data between local and national inventories. Although the uncertainty analysis of
bottom-up emission inventories at national and local scales partly supported the “top-down” estimates
using observation and/or chemistry transport models, detailed investigations and field measurements
were recommended for further improving the emission estimates and reducing the uncertainty of in-
ventories at local and regional scales, for both industrial and other sectors.

© 2017 Elsevier Ltd. All rights reserved.
ollution Control & Resource
y, 163 Xianlin Ave., Nanjing,
1. Introduction

Emission inventories are fundamental for atmospheric science
research with chemical transport modeling (CTM) and for policy
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making in pollution mitigation. Recently the focus on China's
emissions is in particular rising, as the country contains a wide
variety of emissions sources, relatively large emission intensities,
and fast changes in temporal and spatial patterns of emissions,
attributed to the swift growth of economy and to the multiple
measures of emission controls. At continental/national scale,
various inventories have been developed including the one for
Intercontinental Chemical Transport Experiment-Phase B (INTEX-B,
Zhang et al., 2009), the Emissions Database for Global Atmospheric
Research (EDGAR, JRC/PBL, 2011), the Regional Emission inventory
in Asia (REAS, Ohara et al., 2007; Kurokawa et al., 2013), and the
Multi-resolution Emission Inventory for China (MEIC, http://www.
meicmodel.org/). Resulting from different methods and data sour-
ces, discrepancies existed between inventories and the model
performances varied significantly when they were applied in CTM
(Saikawa et al., 2017), motivating the uncertainty analysis of current
inventories. Compared to earlier studies based mainly on expert
judgment (Streets et al., 2003; Zhang et al., 2009; Lei et al., 2011a),
Monte-Carlo simulation have been applied to quantify the un-
certainties of emissions more carefully, and reduced uncertainty
could be expected (Zhao et al., 2011, 2013; Lu et al., 2011). In those
studies, emission factors (emissions per unit of energy consump-
tion or industrial/agricultural production) were the main sources of
uncertainties attributed mainly to lack of domestic measurements
on various sources. However, recent studies suggested that the
uncertainty of China's energy statistics should be larger than ex-
pected, enhancing the uncertainty of emission estimation for the
country (Guan et al., 2012; Hong et al., 2017).

Besides national ones, increasing attentions have been paid on
regional/local inventories, motivated mainly by the urgent needs
for haze pollution mitigation in specific regions across the country
(Zheng et al., 2009; Wang et al., 2010; Fu et al., 2013; Zhao et al.,
2015; Zhou et al., 2017). Zhao et al. (2015) incorporated detailed
information on individual plants and developed a city scale emis-
sion inventory for Nanjing in eastern China. The emission esti-
mates, compared to the downscaled national inventory, were more
consistent with the “top-down” constraints obtained from ground/
satellite observation. Better model performances could also be
achieved when the local inventory was used in high-resolution
CTM (Zhou et al., 2017). To further understand the discrepancies
between observation and CTM simulation, quantifying the un-
certainties of emissions at small spatial scales gets essential.
Nevertheless, very limited studies have quantified the uncertainty
of emission inventory at local scale, except for given species (e.g.,
biogenic volatile organic compounds and NH3 in Pearl River Delta
by Zheng et al. (2010) and (2012), respectively) or single source
type (e.g., biomass burning by He et al. (2011), on-road vehicles by
Wang et al. (2008), and ships by Li et al. (2016)). Moreover, the
methods and results of uncertainty analyses could potentially vary
a lot for national and local inventories based on different data
sources and depth of details. Current available studies, however,
simply followed the method for national inventory and seldom
conducted careful analysis on individual emission sources. To cur-
rent knowledge of data and methods for multi-scale inventory
development, the uncertainty of emission estimation at local scale,
and its difference between local and national inventories remain
unclear.

In this work, therefore, a comprehensive uncertainty analysis
was conducted on emission inventories for industrial sectors at
different spatial scales. We focused on industrial sectors because
the methods and data in local inventory could be largely improved
in contrast to other sectors (e.g., residential and commercial). We
selected Jiangsu province and its capital city Nanjing in eastern
China as examples of provincial- and city-level inventories. The
processes and data of the inventory development were fully
tracked and a detailed Monte-Carlo simulation framework was
established, evaluating the uncertainties of emissions from indi-
vidual plants. At national scale, the uncertainties of emissions of
China and Jiangsu were also quantified following the method of our
previous work (Zhao et al., 2011). The impacts of various data and
methods between multi-scale inventories on the uncertainties of
emission estimation are further analyzed.
2. Data and methods

2.1. Multi-scale emission inventories

Annual emissions of eight species (SO2, NOX, CO, TSP (total
suspended particles), PM10, PM2.5, black carbon (BC), and organic
carbon (OC)) from industrial sources in 2012were obtained at three
spatial scales, i.e., national, provincial and city-levels. The year 2012
is the base year for China's National Action Plan of Air Pollution
Prevention and Control, and the accuracy of its emissions is of great
concerns in both scientific and policy-making communities. At
national level, China's emissions were estimated by province based
mainly on the provincial energy and industrial production statistics
(Xia et al., 2016). The industrial sources were classified into thermal
power plants, industrial boilers, cement production, iron & steel
production, and other industrial processes (see detailed source
category in Table S1 in the supplement). The annual emissions for
given province were calculated using Eq. (1):

Ei;p ¼
X
k

X
m

X
n

ALp;k;m;n � EFi;p;k;m � Rp;k;m;n �
�
1� hi;p;n

�

(1)

where i, p, k, m, and n stand for species, province, sector, fuel type,
and emission control technology, respectively; AL is the activity
level, either energy consumption or industrial production; EF is the
unabated emission factor; R is the penetration rate of the relevant
emission control technology; and h is the removal efficiency of that
technology.

For SO2 and PM with specific particle size (i.e., PM2.5 and PM10)
from coal combustion, emission factors were calculated using Eqs.
(2) and (3), respectively:

EFSO2;p;k;m ¼ SCp;k;m � SRk;m �
�
1� hSO2;p;n

�
� 2 (2)

EFPM;y;p;k;m ¼ ACp;k;m � ARk;m � fy;k;m �
�
1� hPM;y;p;n

�
(3)

where y stands for the particulate size; SC and AC are the sulfur and
ash content of the fuel, respectively; SR and AR are the release ratio
(%) of sulfur and ash, respectively; and f is the particle mass fraction
by size. For carbonaceous aerosols, emission factors are obtained by
applying the mass fractions of BC (FBC) and OC (FOC) to PM2.5.

We select Jiangsu province and its capital city Nanjing for the
uncertainty analysis of provincial and city-level inventories,
respectively. The geographic locations of Jiangsu and Nanjing with
major emission sources are illustrated in Figure S1 in the supple-
ment. Jiangsu is located in the Yangtze-River Delta with developed
economy, large fossil fuel consumption and anthropogenic emis-
sions. Incorporating the detailed information of individual sources
compiled by local environmental protection agency (i.e., the offi-
cially published Environmental Statistics and Pollution Source
Census data), a bottom-upmethodology was developed to estimate
the emissions from industrial point sources. It should be noted that
data from Environmental Statistics and Pollution Source Census,
and those from provincial energy and economy statistics were
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compiled by different official departments, and gaps existed be-
tween them. The differences between the aggregated activity data
from point sources and the provincial energy/economic statistics
were calculated and used to estimate the emissions from area
sources by sector (Zhou et al., 2017). The aggregated activity data
compiled plant by plant, including coal consumption of power
generation, production of cement, clinker, coke, pig iron, and crude
steel, were estimated at 108%, 95%, 120%, 109%, 104%, and 98% of the
provincial statistics, respectively. The data indicates, on one hand,
that larger activity levels were obtained based on detailed inves-
tigation of individual emission sources than official statistics for
power and most processes of iron & steel sectors. On the other
hand, almost complete investigation on point sources was con-
ducted for those sectors, and very small fractions of activities had to
be estimated as area sources. Through similar method, emissions
for Nanjing were calculated from expanded databases including
data from unconventional investigations and measurements on
specific emitters besides routinely published Environmental Sta-
tistics (Zhao et al., 2015). In general the emissions of industrial
sources at provincial/city level were calculated by aggregating the
emissions of point and area sources:

Ei ¼
X
j

ALj � EFi;j �
�
1� hi;j

�
þ
X
k

X
m

X
n

ALa;k;m;n � EFi;a;k;m

�
�
1� hi;a;n

�

(4)

where j represented the individual plant, and a presented the area
sources.

2.2. Uncertainty analysis of multi-scale inventories

Following our previous work (Zhao et al., 2011), Monte Carlo
simulation was applied to quantify the uncertainties of national
inventory by source category for the whole country and Jiangsu
province. In the simulation framework, uncertainty of each
parameter was characterized by probability distribution function
(PDF), and the framework randomly generated values for uncertain
variables over and over to simulate a model. A simulation calcu-
lated numerous scenarios of a model by repeatedly picking values
from the PDFs for all the uncertain variables, and the uncertainty of
target (emissions in this case) was determined according to the
ranges of calculated scenarios. The PDF was fitted for parameters
with adequate measurement data, using the Kolmogorov-Smirnov
test (K-A test) for the goodness-of-fit (p ¼ 0.05). For parameters
with limited measurements, and those that fail to pass the
goodness-of-fit test, probability distributions must be assumed. In
particular, the uncertainties of activity levels for power sector were
taken from Zhao et al. (2011). Small difference was found between
the annual coal consumption officially reported for the entire
country and that from the sum of provincial consumption of power
plants, implying good reliability of statistics for the sector (Zhao
et al., 2013). Following the guideline by IPCC (2006), normal dis-
tribution was assumed and the coefficients of variation (CV, the
standard deviation divided by the mean) was set at 5% for activity
data of power sector. For other industrial sources, enhanced un-
certainty of coal consumption was found through comparisons
between the old and updated national energy statistics, and it
would lead to an apparent uncertainty of 38% in SO2 emissions at
most (Hong et al., 2017). Accordingly, CV of activity data for in-
dustrial sources other than power sector was elevated to 20% in this
work (i.e., the 95% confidence interval (CI) was 39.2% around the
central estimate). Determination of PDFs for emission factors will
be discussed in details in the following section. All of the input
activity levels and emission factors with corresponding statistical
distributions are then placed in the Monte Carlo framework, and
10,000 simulations are performed to analyze the uncertainties of
emissions by sector and species. Parameters that were most sig-
nificant in determining uncertainties were identified according to
their contributions to the variance of emissions.

To quantify the uncertainties of regional (provincial and city)
inventories, Monte Carlo framework was improved by incorpo-
rating plant-specific information and then applied at each plant for
point sources. As the energy consumption data of power sector
were compiled and crosschecked based on multiple data sources
(Zhou et al., 2017; Zhao et al., 2015), we assumed that the uncer-
tainty would be smaller than other sources and we tentatively set
the CV at 10% for each individual plant. For point sources of other
categories and area sources, in contrast, the CVs of activity data
were set at 20%, the same as the national inventory. For emission
factors, we divided the parameters into two types, i.e., the common
ones and plant-specific ones. The common parameters indicated
those that keep stable or change slightly for certain technology/fuel
type, e.g., the sulfur and ash release ratio of bituminous pulverized
combustion. The PDFs were determined following Zhao et al. (2011,
2013), with the most recent measurement data incorporated. The
plant-specific parameters indicated those that are independent and
might vary largely between different plants, e.g., the SO2 and NOX
removal efficiencies of flue gas desulfurization (FGD) and selective
catalytic reduction (SCR) systems, respectively, and the sulfur and
ash contents of fossil fuels. Available informationwas collected and
comprehensively compiled to generate the PDFs for those param-
eters. Details are discussed in the following section.

3. Uncertainties of emission factors

3.1. Common parameters

Applied for uncertainty analyses of both national and regional
(provincial and city level) inventories, common parameters related
to emission factors were updated from existing studies by species
and source category (Zhao et al., 2011, 2012; 2013; Cui et al., 2015),
and summarized in Table S2. The PDFs of particle mass fraction by
size were taken from Zhao et al. (2011). Combining bootstrap and
Monte-Carlo simulation, uncertainties of the unabated emission
factors and the particle removal efficiencies of dust collectors for
power sector have been thoroughly analyzed by boiler types, fuel
quality, and emission control device in our previous study (Zhao
et al., 2010, 2012). We assumed there were few changes on those
parameters and applied them in this work. For national inventory
analysis, triangle distributions were applied for the removal effi-
ciencies of SO2 andNOX of FGD and SCR systems, respectively, based
on domestic studies (Lu et al., 2011; Tian et al., 2013).

For boilers in other industrial sectors, Zhao et al. (2011) relied
most on a relatively old database (SEPA, 1996) to quantify the un-
certainty of emission factors. In this work, updated databases with
recent measurements were included in the analysis (MEP, 2010; He,
2015), and the PDFs of emission factors were correspondingly
revised. For example, the sulfur release ratio of coal combustion (SR
in Eq. (2)) was elevated from 85% to 90% (i.e., the same as that of
power plant), as the combustion technology was improved during
past years. In contrast, the ash release ratio (AR in Eq. (3)) for grate
stokers was kept unchanged at 13% with a logistic distribution.

For cement and iron & steel production, domestic investigation
and measurements have been conducted recently (Lei et al.,
2011a,b; Huo et al., 2012), and the results were obtained to up-
date the uncertainty analysis of relevant emission factors. For
example, the average NOX emission factor for coking was re-
estimated at 1.0 kg/t-production with a uniform distribution
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(0.2e1.7). Uncertainties of emission factors of other industrial
processes were mainly obtained from different databases that
contain most existing domestic measurement results (SEPA, 1996;
MEP, 2010; He, 2015). For gaseous pollutants and particles, there
was little change in the PDFs of unabated emission factors for most
source types compared to previous studies (Zhao et al., 2011, 2012;
2013). The reduced emissions from newer plants were assumed to
result from the enhanced penetrations of emission control tech-
nologies (Xia et al., 2016). Normal distributions with CV at 50%were
tentatively assumed for source categories without sufficient data
support of PDF calculation (e.g., refinery, fertilizer production and
glass production). For carbonaceous aerosols, although recent field
tests implied that OC fractions in PM2.5 started to decline in resi-
dential combustion sources (Cui et al., 2015), few tests were sup-
plemented for industrial processes and thus PDFs of OC and BC
fractions were assumed unchanged from our previous analysis
(Zhao et al., 2011).

3.2. Plant-specific parameters

Plant-specific parameters were applied mainly in uncertainty
analysis of point sources in regional inventories (for area sources
and point sources without detailed information, common param-
eters were applied instead). For sources related to fossil fuel com-
bustion (e.g., power plants, industrial boilers/kilns, and industrial
processes that contain coal combustion), the PDFs of sulfur content,
ash content, and SO2 and NOX removal efficiencies of corresponding
air pollutant control devices (APCDs) were determined for each
plant. Fig. 1a and b shows the frequencies of sulfur and ash contents
for Jiangsu's power plants and other industrial boilers. The average
sulfur content was lower for coals used for power generation than
those for other boilers. Normal distributions were assumed for
sulfur and ash contents of coal burned for individual plant. Stan-
dard deviations of those distributions were determined for each
plant with following steps. First, standard deviation for the whole
sector was determined through normal distribution fitting with all
the data samples within the sector. The difference between sulfur/
ash content of single plant and average of the whole sector was
then calculated for each plant. The larger value obtained from
above two steps was selected as the standard deviation for single
plant.

Fig.1c and d shows the frequencies of removal efficiencies of SO2
and NOX for Jiangsu's power and other industrial plants. For both
source categories, SO2 control systems were more widely applied
than NOX control, while the average NOX removal efficiency based
on limited data samples was higher than that of SO2 for other in-
dustrial boilers. Triangular distribution was assumed for the SO2
removal efficiency for each plant. Clear difference was found be-
tween sectors. In 2012, SO2 control technologies (including wet-
FGD and other simple technologies) were applied at 90% of Jiang-
su's coal-fired power units, with the average removal efficiency
calculated at 68%. For industrial boilers and kilns, in contrast, SO2
control was applied only 18% of the plants and the average removal
rate was 42%. Thus the ranges of triangular distributions differed
between source categories. For power sector, the ranges of SO2
removal rates for FGD systems and other technologies (e.g., circu-
lating fluidized bed, CFB) were 50e98% and 10e85%, respectively,
according to the investigated data. For other industrial boilers and
kilns, similarly, the ranges were determined at 50e98%, 30e85%,
10e60%, and 10e85% for wet-FGD, dry-FGD, CFB and other tech-
nologies, respectively. Besides coal combustion, FGD systems were
also applied for other industrial processes. Relatively high removal
efficiencies were found for sintering in iron & steel production, and
a triangular distribution ranged 50e98% was assumed for individ-
ual plant. For other processes including production of ammonia,
sulphuric acid, and fertilizer, non ferrous metal smelting, and re-
finery, the SO2 removal rates were lower and varied significantly
between plants. A triangular distribution ranged 10e85% was
tentatively assumed. There were fewer plants applying NOX control
technologies in 2012. For SCR systems, triangular distributions
ranged 22e84% were assumed for the removal efficiency, based on
the minimum and maximum values of the investigated plants. For
selective non-catalytic reduction (SNCR) technology, there were
insufficient data to determine PDF, and uniform distribution ranged
25e50% was applied as indicated by Tian et al. (2013).

The removal efficiencies of dust collector by particle size are
crucial for estimating the size-fractioned PM emissions of single
plant. Nevertheless, therewas little information on removal rates of
PM2.5 or PM10 but TSP for individual plants in current databases,
and limited field measurements across the country had to be relied
on (Zhao et al., 2010). In this study, the investigated removal rates
for TSP by plant and the PM size fractions by dust collector type
from previous work were incorporated to calculate the removal
rates for size-fractioned PM by plant. For data samples that passed
KeS test, bootstrap simulations were applied to quantify the mean
values and 95% CIs of the removal rates by dust collector type and
particle size. Fig. 2 provides bootstrap simulation examples for
particle removal efficiencies of wet scrubber for cement production
and those of fabric filter for sintering. For those that failed to pass
KeS test, normal and uniform distributions were subjectively
applied for the parameters with sample size �10 and < 10,
respectively. The 95% CIs were calculated based on the relative
ranges provided in our previous work by dust collector type (Zhao
et al., 2010). Therefore, the PDFs of PM removal rates were obtained
based on the data of individual plants but were applied by dust
collector type at sector level, as summarized in Table S3 in the
supplement.

For the case of city level inventory, more local information was
collected from investigation and tests on single plants and the
uncertainties of relevant parameters were further revised
compared to the provincial inventory. For example, field mea-
surements on PM removal efficiencies by particle size were con-
ducted for individual power units (unpublished data by local
environmental protection administration), which were assumed to
reduce the uncertainties of emission estimation for power sector.
The PDFs of the parameters were thus determined at plant level
according to the dust collector type, following the rules and relative
ranges around the central estimates by Zhao et al. (2010). There
were only two iron & steel plants in the city, and the release ratios
of coke gas and flue gas of blast furnaces were tested to be clearly
smaller than the national average (Zhao et al., 2012). The CO
emission factors of coking and pig iron production for the plants
were thus 73e76% and 39e98% lower than the national average
levels, respectively, while relative ranges around the central esti-
mates were assumed the same as those of national levels.

4. Results and discussions

4.1. Uncertainties of multi-scale emission inventories

The uncertainties of industrial emission estimations for China
and Jiangsu 2012 in the national inventory are shown in Table 1 by
source category, expressed as 95% CIs. The uncertainties were
estimated at �17e37%,
�21e35%, �19e34%, �29e40%, �22e47%, �21e54%, �33e84%,
and �32e92% for the emissions of SO2, NOX, CO, TSP, PM10, PM2.5,
BC, and OC respectively for the whole country. The analogue
numbers for Jiangsu were �54e53%, �24e30%,
�21e36%, �28e46%, �27e57%, �30e60%, �34e89%,
and �36e74%, respectively.



Fig. 1. The frequency of sulfur and ash contents in coal and that of removal efficiencies of SO2 and NOX for Jiangsu's power plants and other industrial boilers, based on plant-by-
plant investigation. The plant numbers are indicated in the parentheses.
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For SO2, power sector was the largest source category, contrib-
uting 46% and 67% to China's and Jiangsu's industrial emissions,
respectively. In contrast to previous studies (Zhao et al., 2011; Chen
et al., 2014), elevated uncertainties of SO2 emissions from power
plants were found in the national inventory (�33e71%
and �77e81% for the whole country and Jiangsu, respectively),
leading to bigger 95% CIs of total industrial emissions than other
national inventories (e.g., the inventories for TRACE-P and INTEX-
B). The reasons will be discussed later in Section 4.2. For NOX and
CO, the largest uncertainties were found in industrial boiler com-
bustion, ranging from �47e151% and �53e86% for the whole
country, and �35e99% and �49e84% for Jiangsu, respectively. Due
to the poor information on technology at national scale, uniform
emission factor had to be applied, and it ignored differences of
combustion efficiencies across the sector, and yielded considerable
uncertainty.

For particles, iron& steel industry and other industrial processes
were the largest contributors, while emissions from cement
production were constrained compared to earlier years (Lei et al.,
2011b; Zhao et al., 2011; Xia et al., 2016) attributed mainly to the
increased penetration of fabric filters. Relatively big uncertainties
were found for cement production and industrial boilers, and larger
uncertainties were estimated for smaller particles for almost all the
sectors. For carbonaceous aerosols, bigger uncertainties were found
for power and industrial boilers, but the uncertainties of total in-
dustry were dominated by iron & steel production, the main in-
dustrial source of BC and OC. Although uncertainties of emissions
from other industrial processes were not the largest for most spe-
cies, it does not imply that emissions of the source category were
clearly known. The results in Table 1 aggregate the uncertainties of
all processes and thus cannot reveal the potentially larger un-
certainties for individual processes.

Table 2 summarized the uncertainties of provincial (Jiangsu) and
city-level (Nanjing) emission inventory by source category. The
uncertainties for Jiangsu were estimated at �15e18%, �18e33%,
�16e37%, �20e30%, �23e45%, �26e50%, �33e79%,



Fig. 2. The probability bands of particle removal efficiencies of wet scrubbers for cement production (aec) and of fabric filters for sintering (def), through bootstrap simulation with
individual plant data.
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Table 1
Uncertainties of China's and Jiangsu's emissions (unit: Gg) in the national inventory by industrial source category for 2012. The percentages in the parentheses indicate the 95%
CI around the central estimate.

SO2 NOX CO TSP PM10 PM2.5 BC OC

China

PP 10,531 (�33%, 71%) 10,355 (�21%, 28%) 1783 (�24%, 35%) 1830 (�25%, 38%) 1,462 (�27%, 45%) 889 (�37%, 60%) 7 (�59%, 562%) 1 (�29%, 271%)
CEM 1702 (�53%, 55%) 3,613 (�62%, 74%) 6,390 (�41%, 57%) 2,698 (�57%, 168%) 2,137 (�63%, 177%) 1,243 (�68%, 197%) 10 (�73%, 181%) 25 (�74%, 221%)
ISP 2,112 (�56%, 90%) 1,503 (�57%, 23%) 33,940 (�44%, 52%) 4,797 (�40%, 71%) 2,897 (�45%, 65%) 2,283 (�49%, 63%) 325 (�48%, 108%) 296 (�49%, 100%)
PRO 4,409 (�28%, 36%) 1,182 (�37%, 43%) 32,504 (�25%, 62%) 8,397 (�56%, 55%) 2,458 (�36%, 38%) 1,373 (�29%, 55%) 108 (�53%, 62%) 111 (�60%, 34%)
OIC 4,287 (�40%, 59%) 2,797 (�47%, 151%) 6,634 (�53%, 86%) 1750 (�58%, 137%) 1,064 (�56%, 171%) 644 (�59%, 256%) 74 (�71%, 319%) 26 (�54%, 1,054%)
Total 23,041 (�17%, 37%) 19,430 (�21%, 35%) 81,252 (�19%, 34%) 19,471 (�29%, 40%) 10,019 (�22%, 47%) 6,432 (�21%, 54%) 524 (�33%, 84%) 460 (�32%, 92%)

Jiangsu

PP 882 (�77%, 81%) 834 (�24%, 36%) 171 (�25%, 37%) 185 (�37%, 63%) 145 (�38%, 70%) 86 (�44%, 87%) 1 (�64%, 547%) 0 (�37%, 746%)
CEM 85 (�61%, 69%) 297 (�63%, 74%) 272 (�46%, 54%) 192 (�65%, 183%) 154 (�70%, 190%) 91 (�75%, 207%) 1 (�79%, 202%) 2 (�79%, 240%)
ISP 78 (�55%, 54%) 61 (�59%, 23%) 2,175 (�39%, 49%) 324 (�40%, 73%) 192 (�47%, 57%) 155 (�49%, 57%) 13 (�58%, 131%) 13 (�55%, 124%)
PRO 224 (�32%, 40%) 63 (�34%, 51%) 1942 (�29%, 56%) 386 (�53%, 57%) 103 (�38%, 42%) 52 (�31%, 63%) 7 (�54%, 61%) 8 (�61%, 36%)
OIC 49 (�58%, 68%) 61 (�35%, 99%) 60 (�49%, 84%) 15 (�52%, 111%) 10 (�45%, 124%) 7 (�40%, 144%) 1 (�49%, 179%) 1 (�32%, 382%)
Total 1,318 (�54%, 53%) 1,317 (�24%, 30%) 4,621 (�21%, 36%) 1,103 (�28%, 46%) 604 (�27%,57%) 392 (�30%, 60%) 23 (�34%, 89%) 23 (�36%, 74%)

Table 2
Uncertainties of Jiangsu's and Nanjing's emissions (unit: Gg) by industrial source category for 2012 in the provincial and city-level inventories, respectively. The percentages in
the parentheses indicate the 95% CI around the central estimate.

SO2 NOX CO TSP PM10 PM2.5 BC OC

Jiangsu

PP 612 (�12%, 16%) 685 (�25%, 28%) 219 (�36%, 64%) 366 (�23%, 35%) 164 (�25%, 35%) 71 (�33%, 54%) 1 (�73%, 337%) 0 (�49%, 421%)
CEM 36 (�34%, 44%) 122 (�58%, 58%) 113 (�26%, 31%) 931 (�46%, 75%) 478 (�58%, 108%) 233 (�76%, 131%) 2 (�71%, 108%) 5 (�74%, 140%)
ISP 118 (�32%, 116%) 90 (�36%, 23%) 2,965 (�23%, 37%) 605 (�21%, 44%) 356 (�30%, 42%) 278 (�37%, 41%) 14 (�54%, 101%) 28 (�47%, 68%)
LIM 3 (�48%, 38%) 6 (�35%, 38%) 78 (�29%, 42%) 267 (�65%, 12%) 32 (�66%, 19%) 5 (�66%, 26%) 0 (�68%, 29%) 0 (�83%, 69%)
BRI 22 (�37%, 43%) 5 (�42%, 59%) 120 (�40%, 36%) 143 (�40%, 45%) 29 (�41%, 51%) 10 (�44%, 51%) 4 (�35%, 74%) 4 (�47%, 42%)
NFS 69 (�65%, 84%) 0 (�43%, 135%) 0 (�86%, 365%) 45 (�75%, 285%) 42 (�75%, 283%) 38 (�75%, 280%) e e

AP 1 (�50%, 401%) 7 (�38%, 74%) 165 (�78%, 53%) 2 (�79%, 85%) 1 (�66%, 186%) 0 (�52%, 268%) 0 (�77%, 307%) 0 (�44%, 388%)
GLA 6 (�30%, 58%) 6 (�43%, 90%) 1 (�73%, 449%) 35 (�22%, 18%) 33 (�31%, 15%) 32 (�32%, 15%) e e

FER 2 (�55%, 178%) 1 (�71%, 232%) 1 (�95%, 393%) 8 (�48%, 54%) 7 (�51%, 48%) 6 (�53%, 47%) e e

REF 5 (�28%, 85%) 4 (�44%, 48%) 137 (�84%, 415%) 2 (�41%, 47%) 2 (�41%, 47%) 1 (�40%, 52%) e e

SAP 5(�40%, 51%) 1 (�69%, 172%) 1 (�93%, 507%) 2 (�78%, 103%) 1 (�71%, 239%) 0 (�69%, 450%) 0 (�98%, 84%) 0 (�82%, 607%)
NAP 0 (�70%, 134%) 2 (�81%, 811%) 0 (�95%, 427%) 3 (�88%, 132%) 1 (�86%, 230%) 0 (�82%, 459%) 0 (�97%, 545%) 0 (�79%, 2056%)
OIC 252 (�13%, 47%) 202 (�34%, 62%) 130 (�50%, 124%) 123 (�72%, 96%) 31 (�66%, 187%) 13 (�51%, 280%) 2 (�79%, 339%) 1 (�46%, 426%)
Area 235 (�73%, 79%) 77 (�70%, 216%) 466 (�52%, 102%) 109 (�48%, 97%) 48 (�41%, 134%) 24 (�38%, 188%) 1 (�93%, 367%) 1 (�61%, 632%)
Total 1,366 (�15%, 18%) 1,207 (�18%, 33%) 4,396 (�16%, 37%) 2,640 (�20%, 30%) 1,223 (�23%, 45%) 712 (�26%, 50%) 24 (�33%, 79%) 39 (�33%, 71%)

Nanjing

PP 52 (�18%, 22%) 81 (�12%, 33%) 32 (�30%, 41%) 16 (�30%, 39%) 11 (�34%, 47%) 7 (�39%, 54%) 0 (�82%, 128%) 0 (�63%, 76%)
CEM 6 (�46%, 47%) 20 (�56%, 68%) 18 (�26%, 39%) 17 (�64%, 162%) 12 (�72%, 179%) 8 (�83%, 212%) 0 (�84%, 193%) 0 (�83%, 253%)
ISP 24 (�27%, 177%) 20 (�28%, 49%) 550 (�33%, 47%) 71 (�26%, 58%) 47 (�36%, 46%) 38 (�42%, 49%) 2 (�67%, 104%) 3 (�49%, 116%)
LIM 0 (�41%, 46%) 0 (�39%, 41%) 4 (�28%, 47%) 16 (�66%, 15%) 2 (�67%, 21%) 0 (�66%, 25%) 0 (�68%, 35%) 0 (�83%, 65%)
BRI 2 (�37%, 48%) 1 (�42%, 66%) 8 (�38%, 39%) 15 (�39%, 42%) 3 (�40%, 47%) 1 (�40%, 43%) 0 (�33%, 65%) 0 (�44%, 35%)
NFS 0 (�69%, 70%) 0 (�44%, 113%) 0 (�67%, 216%) 0 (�66%, 267%) 0 (�72%, 261%) 0 (�74%, 270%) 0 (�93%, 436%) 0 (�46%, 1,484%)
OIC 10 (�28%, 33%) 14 (�48%, 110%) 8 (�80%, 307%) 5 (�83%, 124%) 3 (�83%, 169%) 2 (�84%, 196%) 0 (�88%, 392%) 0 (�56%, 1,126%)
Area 19 (�36%, 42%) 7 (�43%, 154%) 147 (�69%, 341%) 5 (�39%, 77%) 3 (�31%, 87%) 3 (�32%, 98%) 0 (�85%, 406%) 0 (�48%, 1,241%)
Total 114 (�17%, 22%) 144 (�10%, 33%) 768 (�23%, 75%) 145 (�19%, 36%) 82 (�23%, 41%) 59 (�28%, 48%) 3 (�45%, 82%) 4 (�34%, 96%)

Y. Zhao et al. / Atmospheric Environment 165 (2017) 207e221 213
and �33e71% for emissions of SO2, NOX, CO, TSP, PM10, PM2.5, BC,
and OC respectively. Power plants and industrial boilers were the
main contributors to SO2 and NOX emissions. Compared to the re-
sults of the national inventory, the uncertainty of SO2 emissions for
the two source categories were reduced to�12e16% and�13e47%,
and that of NOX to �25e28% and �37e62%, respectively. Reduced
uncertainties in the provincial inventory indicated the benefits of
detailed investigations on the activity data and emission factors for
individual plants instead of entire sectors or sub-sectors. Cement
and iron & steel production were the most important sources of
primary particles, and iron & steel production dominated the CO,
BC and OC emissions. Similarly, the uncertainties of those source
categories for given species were smaller than those in the national
inventory. For other industrial processes, although informationwas
collected at plant level by source category, relatively large un-
certainties were still estimated for most source types, indicating
the poor understanding of the emission characteristics for this
sector. In addition, the 95% CIs of emissions for area sources were
calculated as one combined group, thus they could not reveal the
uncertainties for any single source category.

At city scale, the uncertainties of Nanjing's industrial sources
were estimated at �17e22%, �10e33%, �23e75%, �19e36%,
�23e41%,�28e48%,�45e82%, and�34e96% for emissions of SO2,
NOX, CO, TSP, PM10, PM2.5, BC, and OC respectively. The 95% CIs were
similar to the relative ranges of provincial inventory for most spe-
cies, with an exception that enhanced uncertainty was found for CO
in the city-scale inventory. Power sector and iron & steel industry
were identified as the most important sources for gaseous pollut-
ants (except CO) and particles, respectively, and small changes in
95% CIs (relative ranges) were found for corresponding sector/
species compared to the provincial inventory.
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4.2. Identification of key parameters

Table 3 summarized the 1st and 2nd ranking parameters
contributing most to the uncertainties of China's and Jiangsu's
emissions in the national inventory by industrial source category.
As can be seen, the emission factors (or associated parameters)
were identified as the biggest contributors to the uncertainties of
emissions for most source categories except iron & steel
production.

For SO2 from power generation, the uncertainty of emissions for
the whole country was dominated by the average removal effi-
ciency of wet FGD, while the main source of uncertainties for
Jiangsu was the average sulfur content of coals in the province. For
iron & steel production, the unabated EF of sintering process was
the most significant parameter to the emission uncertainty for both
China and Jiangsu. For NOX, EF of grate boilers was the key
parameter for uncertainties of emissions from power generation,
although the penetration of the technology was very limited in
2012. The uncertainty of cement production emissions was mainly
influenced by the EF of precalciner kilns (the most widely applied
technology in the sector). Difference existed in the analysis for
other industrial combustion: EF of grate boiler (coal combustion)
was crucial for the uncertainty of the whole country's emissions
while that of oil combustion for the uncertainty of the province. For
Table 3
The parameters contributing most to emission uncertainties for China and Jiangsu in the
parentheses indicate the contributions of the parameters to the variance of correspondin

SO2 NOX CO PM

China

PP hSO2 FGD (�78%) EFgrate (37%) EFpulverized (�200MW)

(44%)
fPM2.5 pulverized

(33%)
ALcoal (3%) EFtangential bituminous

(18%)
EFpulverized (<200MW)

(26%)
hPM2.5 ESP (�12

CEM ALcement (49%) EFprecalciner (62%) ALcement (66%) EFPM precalciner

(38%)
hSO2 precalciner

(�23%)
ALcement (26%) EFshaft_kiln (14%) Rprecalciner ESP

(20%)
ISP EFsintering (26%) ALpig_iron (15%) ALsintering (15%) ALpig_iron (15%)

ALsintering (12%) ALcoke (15%) ALsteel (15%) ALcoke (15%)
PRO EFCu_smelting (55%) ALlime (34%) EFrefinery (34%) Rlime nocontrol

(45%)
ALbrick (13%) EFlime (33%) EFbrick (17%) EFPM lime (22%)

OIC ALcoal (48%) EFgrate (68%) EFgrate_handfeed (41%) ARgrate (52%)
SRgrate (14%) EFoil_combustion (10%) ALcoal (30%) ALcoal (20%)

Total hSO2 FGD (�56%) EFgrate (44%) ALpig iron (13%) Rlime nocontrol

(16%)
ALcoal (5%) CEM_B56 (17%) ALsteel (13%) EFPM lime (8%)

Jiangsu

PP SCJiangsu coal (58%) EFgrate (42%) EFpulverized (<200MW)

(43%)
ACJiangsu coal (65

hSO2 FGD (�28%) EFtangential bituminous

(29%)
EFpulverized (�200MW)

(26%)
fPM2.5 pulverized

(10%)
CEM SCJiangsu coal (31%) EFprecalciner (64%) ALcement (56%) EFPM precalciner

(43%)
ALcement (29%) ALcement (26%) EFprecalciner (33%) Rprecalciner ESP

(22%)
ISP EFsintering (14%) ALcoke (15%) ALpig_iron (16%) ALpig_iron (14%)

ALsintering (13%) ALpig_iron (14%) ALsteel (16%) ALsteel (14%)
PRO EFCu smelting (49%) EFbrick (24%) EFbrick (28%) Rlime nocontrol

(40%)
ALbrick (22%) EFlime (20%) EFrefinery (24%) EFPM lime (21%)

OIC SRoil (66%) EFoil_combustion (50%) EFgrate_handfeed (40%) ARgrate (47%)
ALoil (7%) ALoil (20%) ALcoal (32%) ALcoal (17%)

Total SCJiangsu coal (56%) CEM_B56 (26%) ALsintering (13%) EFPM precalciner

(9%)
hSO2 FGD (�26%) EFgrate (26%) ALpig_iron (13%) ALsteel (8%)
CO, iron & steel production and other processes were the biggest
sources for both China and Jiangsu, and the activity data of pig iron
and crude steel production, and EFs of refinery and brick produc-
tion were respectively identified as the most crucial parameters to
emission uncertainties of the two source categories.

In most cases, the same parameters were identified as the
crucial parameters for emission uncertainties of particles with
different sizes (i.e., TSP, PM10, and PM2.5), except for the category of
other industrial process. Unabated EF of lime production were the
most important parameter for the uncertainty of coarse particles, as
the mass fraction of particles above 10 mm was 88%. With a mass
fraction of 82% for PM2.5, in contrast, EF of copper smelting was
estimated to contribute most to uncertainty of PM2.5 for industrial
process. For power sector, mass fraction of PM2.5 for pulverized
combustion was the most crucial for uncertainty of PM emissions
for the whole country, while the average ash content for that of
Jiangsu province. For carbonaceous aerosols, the mass fractions of
BC and OC to PM EFs were identified as the most significant pa-
rameters for most source categories, while uncertainties of total
industrial emissions were largely influenced by the activity data of
coke and pig iron production, as iron & steel production was the
main source of industrial carbonaceous aerosol emissions.

To evaluate the effects of activity levels on emission uncertainty,
a sensitivity analysis was further conducted, in which the CVs of
national inventory, by industrial source category and species. The percentages in the
g emissions (see Section 2.1 for the abbreviations of parameters).

PM10 PM2.5 BC OC

fPM2.5 pulverized

(41%)
fPM2.5 pulverized (58%) FBC pulverized (79%) FOC grate (34%)

%) hPM2.5 ESP (�14%) hPM2.5 ESP (�19%) fPM2.5 pulverized (5%) fPM2.5 grate (23%)

EFPM precalciner

(41%)
EFPM precalciner (42%) EFPM precalciner

(40%)
EFPM precalciner

(33%)
Rprecalciner ESP

(18%)
Rprecalciner ESP (16%) Rprecalciner ESP

(15%)
FOC (21%)

ALpig_iron (15%) ALpig_iron (15%) ALcoke (13%) ALcoke (13%)
ALcoke (15%) ALcoke (15%) ALpig_iron (13%) ALpig_iron (13%)
EFPM lime (17%) EFPM Cu_smelting (18%) EFPM brick (38%) EFPM brick (38%)

Rlime nocontrol

(16%)
RCu_smelting nocontrol

(14%)
ALsolid_clay_brick
(36%)

ALsolid_clay_brick
(37%)

ARgrate (37%) fPM2.5 grate (48%) FBC grate (45%) FOC grate (43%)
fPM2.5 grate (29%) ARgrate (28%) fPM2.5 grate (20%) fPM2.5 grate (26%)
EFPM precalciner

(14%)
EFPM precalciner (11%) ALcoke (11%) ALpig iron (11%)

ALcoke (7.4%) ALcoke (8%) ALpig iron (11%) ALcoke (11%)

%) ACJiangsu coal (58%) ACJiangsu coal (42%) FBC pulverized (64%) FOC grate (37%)

fPM2.5 pulverized

(16%)
fPM2.5 pulverized (32%) ACJiangsu coal (9%) fPM2.5, grate (27%)

EFPM precalciner

(46%)
EFPM precalciner (46%) EFPM precalciner

(44%)
EFPM precalciner

(38%)
Rprecalciner ESP

(20%)
Rprecalciner ESP (18%) Rprecalciner ESP

(18%)
FOC (17%)

ALpig_iron (14%) ALpig_iron (14%) ALcoke (11%) ALsteel (12%)
ALcoke (14%) ALcoke (14%) ALsteel (11%) ALsteel (12%)
EFPM lime (16%) EFPM Cu_smelting (30%) EFPM brick (40%) EFPM brick (40%)

Rlime nocontrol

(13%)
НPM2.5 CYC (�9%) ALsolid_clay_brick

(36%)
ALsolid_clay_brick
(37%)

ARgrate (34%) fPM2.5 grate (43%) FBC grate (32%) FOC grate (36%)
fPM2.5 grate (28%) ARgrate (27%) fPM2.5 grate (17%) fPM2.5 grate (24%)
EFPM precalciner

(19%)
EFPM precalciner (15%) ALsteel (10%) ALsteel (11%)

Rprecalciner ESP (8%) ALsteel (8%) ALcoke (10%) ALpig_iron (11%)
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industrial production and fossil fuel consumption other than power
sector were reduced to 10%, the same as Zhao et al. (2011). The
uncertainties for certain species/source category combinations
(e.g., CO and particles from cement and iron & steel production)
decreased with the declined CVs of activity data, as summarized in
Table S4 in the supplement. The changes in uncertainties of total
industrial emissions of most species, however, were small for both
the whole country and Jiangsu, as shown in Fig. 3a and b, respec-
tively. The result indicated that the limitation of current systems on
China's energy and economic statistics was not the main source of
uncertainties of the total emissions of air pollutants.

Table 4 summarized the 1st and 2nd ranking parameters
contributing most to the uncertainties of Jiangsu's and Nanjing's
emissions in the provincial and city-level inventory by industrial
source category, respectively. There were differences in the key
parameter identification for the province in the national and pro-
vincial inventory. For SO2 from power sector, as an example, the
removal efficiencies of FGD for given individual plants were iden-
tified as the most significant parameters to the uncertainty, with
very limited contribution to variance. Similarly, the uncertainty of
emissions from other industrial combustions was estimated to be
mostly affected by the sulfur content and FGD removal rate of one
single plant. The results thus indicated the importance of better
understanding on emission characteristics for certain individual
Fig. 3. The 95% CIs of emissions in the national inventory for the whole country (a) and Jia
excluded) activity data set at 20% and 10%, respectively. (For interpretation of the references
plants when emission inventory was developed using a “plant-
based” method. For total SO2 emissions, sulfur content and coal
consumption of area sources were identified as the most significant
parameters, implying the necessity to improve the studies on area
sources in the future. For NOX, as unabated EFs could not be pro-
vided for individual plants but for source/technology types, the EF
of bituminous combustion with tangentially-fired burners (mainly
for power sector) and that of coal combustion with grate boilers
were identified as the main sources of emission uncertainty. In
contrast to SO2 control, SCR technology for NOX reduction was not
widely applied in 2012, even in power sector, and the removal rates
of SCR for very limited plants were not significant for the emission
uncertainties. Iron & steel production was the main source of CO,
BC and OC. In contrast to the national inventory in which activity
data dominated the uncertainty for the species, EF-related pa-
rameters (e.g., EF of CO from sintering) playedmore important roles
in the provincial inventory. For particles, EF of cement production
were the main source of uncertainty for the provincial inventory,
similar to the national one.

At city level, the EF-related parameters dominated the un-
certainties of emissions for all the sectors in Nanjing. Large power
and iron & steel plants were responsible for most of energy con-
sumption and industrial production in the city, and the activity data
of those big sources were carefully studied, leading to small
ngsu (b). Blue and green bars represent the results with the CVs of industrial (power
to colour in this figure legend, the reader is referred to the web version of this article.)



Table 4
The parameters contributing most to emission uncertainties for Jiangsu and Nanjing in the provincial and city-level inventories, respectively, by industrial source category and
species. The percentages in the parentheses indicate the contributions of the parameters to the variance of corresponding emissions.

SO2 NOX CO PM PM10 PM2.5 BC OC

Jiangsu

PP hSO2 FGD j (�1%) EFtangential bituminous

(18%)
EFCFBC (11%) hPM > 10 ESP (�14%) hPM2.5_10 ESP (�7%) fPM2.5 pulverized (14%) FBC pulverized (20%) FOC grate (9%)

hSO2 FGD j (�1%) EFno_LNB bituminous (4%) EFgrate_autofeed (6%) AR pulverized (2%) fPM2.5 pulverized (5%) hPM2.5 ESP (�7%) fPM2.5 pulverized (1%) fPM2.5 grate (6%)
CEM hSO2 precalciner

(�17%)
EFprecalciner (25%) EFprecalciner (23%) EFPM precalciner

(13%)
EFPM precalciner (14%) EFPM precalciner (13%) EFPM precalciner

(12%)
EFPM precalciner

(9%)
SCJiangsu coal (3%) N/A ALcoal, j (1%) EFPM CEM_process

(8%)
EFPM CEM_process (4%) fPM2.5 CEM_process

(7%)
fPM2.5 CEM_process

(7%)
FOC (6%)

ISP EFsintering (14%) EFcoke (13%) EFsintering (11%) EFPM pig_iron (7%) fPM2.5 steel (7%) fPM2.5 steel (10%) FBC pig_iron (6%) fPM2.5 steel (15%)
EFpig_iron (9%) EFsintering (10%) EFsteel (6%) hPM > 10 CYC (�4%) EFPM pig_iron (4%) EFPM steel (3%) ALpig_iron (6%) EFPM steel (4%)

BRI EFbrick (25%) EFbrick (24%) EFbrick (24%) EFPM brick (24%) EFPM brick (20%) EFPM brick (22%) EFPM brick (20%) EFPM brick (21%)
N/A N/A N/A N/A fPM2.5_10 brick (4%) fPM2.5 brick (2%) fPM2.5 brick (2%) fPM2.5 brick (2%)

LIM EFlime (24%) EFlime (24%) EFlime (23%) EFPM lime (24%) EFPM lime (22%) EFPM lime (21%) EFPM lime (19%) FOC lime (15%)
hSO2 FGD j (�1%) ALlime,j (1%) ALcoal,j (1%) N/A fPM2.5_10 lime (2%) fPM2.5 lime (3%) FBC lime (3%) EFPM lime (8%)

NFS EFCu_smelting (21%) EFgrate (18%) EFgrate_autofeed (25%) EFPM Cu_smelting

(24%)
EFPM Cu_smelting

(24%)
EFPM Cu_smelting

(23%)
e e

hSO2 FGD j (�1%) EFoil_combustion (4%) N/A ALCu_smelting, j (1%) ALCu_smelting, j (1%) ALCu_smelting, j (1%) e e

AP EFAP (23%) EFgrate (16%) EFAP (23%) AR grate (18%) AR grate (12%) fPM2.5 grate (12%) FBC grate (12%) FOC grate (8%)
N/A EFgas_combustion (6%) ALAP, j (1%) hAP PM>10 WET

(�2%)
fPM2.5 grate (6%) AR grate (8%) fPM2.5 grate (5%) fPM2.5 grate (5%)

GLA SCJiangsu oil (8%) EFoil_combustion (16%) EFgrate_autofeed (24%) EFPM glassproduct

(15%)
EFPM glassproduct

(10%)
EFPM glassproduct

(10%)
e e

SCcoal,j (8%) EFgrate (6%) EFoil_combustion (1%) EFPM glass (7%) fPM2.5 glass (6%) fPM2.5 glass (7%) e e

FER SCcoal,j (17%) EFgrate (22%) EFgrate_autofeed (25%) EFPM FER (18%) EFPM FER (16%) EFPM FER (15%) e e

hSO2 FGD j (�1%) ALcoal,j (2%) ALcoal,j (1%) ALPM fertilizer (6%) ALPM fertilizer (6%) ALPM fertilizer (5%) e e

REF EFREF (16%) EFREF (18%) EFREF (24%) EFPM REF (14%) EFPM REF (14%) EFPM REF (11%) e e

hSO2 FGD j (�5%) ALoil_production, j (6%) ALoil_production, j (1%) ALoil_production, j
(8%)

ALoil_production, j (8%) fPM2.5 REF (7%) e e

SAP EFSAP (21%) EFgrate (22%) EFgrate_autofeed (24%) AR grate (18%) AR grate (11%) fPM2.5 grate (12%) FBC grate (12%) FOC grate (9%)
ALSAP, j (1%) ALcoal, j (1%) N/A ALcoal, j (2%) fPM2.5 grate (6%) AR grate (7%) fPM2.5 grate (5%) fPM2.5 grate (6%)

NAP SCcoal, j (17%) EFNAP (24%) EFgrate_autofeed (24%) AR grate (11%) AR grate (9%) fPM2.5 grate (9%) FBC grate (10%) FOC grate (8%)
ALcoal, j (3%) ALNAP, j (1%) ALcoal, j (1%) ACcoal, j (10%) fPM2.5 grate (3%) AR grate (7%) fPM2.5 grate (4%) fPM2.5 grate (5%)

OIC SCcoal, j (6%) EFgrate (9%) EFgrate_autofeed (11%) ARgrate (22%) ARgrate (13%) fPM2.5 grate (13%) FBC grate (12%) FOC grate (9%)
hSO2 FGD j (�6%) EFgas_combustion (8%) EFgas_combustion (7%) ACJiangsu coal (1%) fPM2.5 grate (5%) ARgrate (9%) fPM2.5 grate (6%) fPM2.5 grate (6%)

Area SCJiangsu coal (18%) EFgrate (21%) EFAP (23%) AR grate (12%) AR grate (8%) fPM2.5 grate (9%) FBC grate (12%) FOC grate (8%)
ALarea_coal (6%) ALcoal (3%) EFREF (13%) ACJiangsu coal (4%) fPM2.5 grate (4%) AR grate (6%) fPM2.5 grate (5%) fPM2.5 grate (5%)

Total SCJiangsu coal (10%) EFtangential bituminous

(7%)
EFsintering (6%) EFPM precalciner

(10%)
EFPM precalciner (12%) EFPM precalciner (10%) FBC pig_iron (5%) fPM2.5 steel (13%)

ALarea_coal (3%) EFgrate (4%) EFREF (5%) EFPM CEM_ process

(6%)
EFPM CEM_process (3%) fPM2.5 CEM_process

(5%)
EFPM pig_iron (4%) EFPM steel (3%)

Nanjing

PP hSO2 FGD j (�18%) EFno_LNB bituminous

(27%)
EFpulverized (<200MW)

(48%)
fPM2.5 pulverized

(22%)
fPM2.5 pulverized (31%) fPM2.5 pulverized (44%) FBC pulverized (51%) FOC gas (54%)

hSO2 FGD j (�6%) EFtangential bituminous

(12%)
EFgas_combustion (5%) AR pulverized (8%) hPM2.5_10 ESP, j (�6%) hPM2.5 ESP, j (�6%) fPM2.5 pulverized (4%) EFPM gas (4%)

CEM hSO2 precalciner

(�36%)
EFprecalciner (55%) EFprecalciner (49%) EFPM precalciner

(40%)
EFPM precalciner (39%) EFPM precalciner (35%) EFPM precalciner

(34%)
EFPM precalciner

(26%)
SRprecalciner,coal
(10%)

ALcoal, j (1%) ALcoal, j (2%) hPM2.5 CEM FF (�4%) hPM2.5 CEM FF (�6%) hPM2.5 CEM FF (�13%) hPM2.5 CEM FF

(�12%)
FOC (14%)

ISP EFsintering (33%) EFcoke (45%) EFsintering (46%) hPM > 10 CYC (�19%) ffugitive_PM2.5 iron

(11%)
ffugitive_PM2.5 iron

(13%)
Ffugitive_BC iron

(28%)
fPM2.5 steel (21%)

EFpig_iron (15%) EFsintering (6%) EFsteel (6%) EFfugitive_PM iron

(14%)
fPM2.5 steel (7%) fPM2.5 steel (10%) EFPM pig_ iron (8%) EFPM steel (11%)

BRI EFbrick (52%) EFbrick (54%) EFbrick (54%) EFPM brick (52%) EFPM brick (45%) EFPM brick (49%) EFPM brick (45%) EFPM brick (47%)
ALbrick, j (3%) ALbrick, j (2%) ALcoal, j (1%) ALbrick, j (3%) fPM2.5_10 brick (8%) fPM2.5 brick (3%) FBC brick (5%) ALbrick, j (3%)

LIM EFlime (50%) EFlime (49%) EFlime (47%) EFPM lime (55%) EFPM lime (50%) EFPM lime (49%) EFPM lime (46%) FOC lime (34%)
ALLime, j (2%) ALLime, j (3%) ALcoal, j (10%) ALLime, j (1%) fPM2.5_10 lime (4%) fPM2.5 lime (6%) FBC lime (6%) EFPM lime (17%)

NFS EFCu_smelting (52%) EFgrate (54%) EFgrate_autofeed (46%) EFPM Cu_smelting

(55%)
EFPM Cu_smelting

(54%)
EFPM Cu_smelting

(54%)
FBC grate (32%) FOC grate (28%)

ALCu_smelting, j (1%) ALgas,j (2%) EFgas (6%) ALCu_smelting, j (1%) ALCu_smelting, j (1%) ALCu_smelting, j (1%) fPM2.5 grate (13%) fPM2.5 grate (16%)
OIC SRgrate (25%) EFgrate (54%) EFgrate_autofeed (55%) ARgrate (41%) fPM2.5 grate (24%) fPM2.5 grate (32%) FBC grate (29%) FOC grate (25%)

hSO2 FGD j (�14%) ALcoal, j (1%) EFgas (1%) fPM2.5 grate (10%) ARgrate (23%) ARgrate (18%) fPM2.5 grate (12%) fPM2.5 grate (15%)
Area SCJiangsu coal (18%) EFNAP (33%) EFREF (52%) ARgrate (29%) ARgrate (23%) fPM2.5 grate (22%) FBC grate (29%) FOC grate (25%)

ALarea_oil (13%) EFgrate (14%) ALarea_oil (13%) ALarea_coal (9%) fPM2.5 grate (15%) ARgrate (14%) fPM2.5 grate (12%) fPM2.5 grate (15%)
Total EFsintering (19%) EFgrate (14%) EFREF (38%) hPM > 10 CYC (�14%) EFPM precalciner (13%) ffugitive_PM2.5 iron

(9%)
Ffugitive_BC iron

(18%)
fPM2.5 steel (17%)

EFpig_iron (9%) EFno_LNB bituminous

(12%)
EFsintering (11%) EFPM precalciner (8%) ffugitive_PM2.5 iron

(6%)
EFPM precalciner (7%) FBC grate (6%) EFPM steel (10%)
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uncertainties. For SO2, removal efficiencies of FGD for individual
plants were the key parameters for the uncertainties of emissions
from power sector, while EF of sintering and pig iron production for
the total emissions. Similar to Jiangsu province, EF of bituminous
combustion without low-NOX burner (LNB) and that of coal com-
bustionwith grate boilers were identified as the crucial parameters
of NOX uncertainty, and the EF-related parameters of cement and
iron & steel production dominated the uncertainties of particle
emissions with different sizes and carbonaceous components.

4.3. Comparisons between multi-scale inventories

As can be seen in Table 1, there were no significant differences in
the uncertainties (expressed as 95% CIs) for China and Jiangsu in the
national emission inventory. Notably, larger uncertainty of SO2
emissions from power sector was found for Jiangsu province (�77%,
81%) than that for the whole country (�33%, 71%). As shown in
Table 3, the sulfur content of coals in the province was assumed to
vary considerably, and it contributedmore to the uncertainty of SO2
emissions than the average removal rate of FGD did. As power
sector was the biggest source of SO2 in Jiangsu, the enhanced un-
certainty of SO2 emissions from power led to elevated uncertainty
of total industrial emissions. For iron & steel production, less un-
certainty was found for Jiangsu than that for China. In the sector,
sintering was the main source of SO2 emissions, and EF of sintering
with relatively big uncertainty (lognormal distributionwith 95% CI:
1.2e6.1 kg/t-product) dominated the uncertainty of emissions for
the whole country. In Jiangsu, however, the sintering production
was relatively less compared to its pig iron and steel production. As
a result, the effects of sintering EF on emission uncertainty were
reduced, while effects of activity data (e.g., steel production) were
elevated. Enhanced uncertainties were found for particle emissions
of Jiangsu province. Similar to SO2, the ash content of coals was
more influential on the uncertainty of emissions from power gen-
eration, resulting in the elevated emission uncertainty for the
sector.

The discrepancies in Jiangsu's emissions between national and
provincial inventories varied for species. For gaseous pollutants, the
discrepancies were small, i.e., 4%, �9% and �5% (calculated as the
differences between the provincial and national estimates relative
to the provincial ones) for SO2, NOX and CO, respectively. In
contrast, the particle emissions in the provincial inventory were
doubled compared to those in the national one, attributed mainly
to the poorer removal rates of dust collectors investigated and
applied in the provincial inventory (Zhou et al., 2017). Besides total
emissions, the contribution of certain sectors also varied, and it
resulted partly from the different methods in activity data esti-
mation in the two inventories. For example, the coal combustion of
Jiangsu's industrial boilers other than power was estimated at 3.6
million tons (Mt) using a “downscaled method” for industrial ac-
tivity levels (Zhao et al., 2015; Xia et al., 2016). Through plant-by-
plant survey, however, the compiled coal consumption in the pro-
vincial inventory reached 32.6 Mt, i.e., 9 times of that in the na-
tional inventory. The big discrepancy in activity data resulted in
different sector contributions to emissions in the two inventories,
particularly for SO2 and NOX that were mainly from coal combus-
tion. The fractions of emissions fromOIC to Jiangsu's total industrial
emissions were estimated at 18% and 4% for SO2, and 17% and 5% for
NOX, in the provincial and national inventory, respectively.

It can be found that the SO2 uncertainties for Jiangsu were
largely reduced in the provincial inventory. Fig. 4a shows the dif-
ference in distributions of SO2 emissions from power plants in the
national and provincial inventories. Based on the information
collected at plant level, improved estimations on emissions from
big plants were anticipated for power and industrial boilers. As
independent PDFs were assumed for the key parameters (e.g.,
sulfur content of coal and removal rate of FGD) of each plant, the
emission uncertainties at sector level could further decrease
attributed to the “compensation-of-error” mechanisms. Moreover,
the contribution of individual plants to the emission uncertainty
could also be enhanced in the provincial inventory, compared to the
variables at sector level in the national inventory. For NOX, CO, BC
and OC, the uncertainties of the provincial inventory were not
significantly reduced compared to the national inventory. As shown
in Fig. 4b, the shapes of probability distributions of NOx frompower
plants in the provincial and national inventories did not vary much.
Although large fraction of activity data was compiled at plant-level
in the provincial inventory, limited progress was made to improve
the estimation of the sector/technology-based emission factors that
played more important roles on emission uncertainty for those
species. In some cases, even bigger uncertainty was estimated for
provincial inventory, e.g., CO emissions from power and industrial
boilers. According to on-site investigations, the penetration of grate
boilers was larger than it was assumed in the national inventory,
and EF of grate boilers with relatively big variation (lognormal
distribution with 95% CI: 0.1e14.6) enhanced the uncertainty of
emissions. The uncertainties of particles with different sizes were
reduced to some extent in the provincial inventory. With the
improved estimation on coal quality at plant level, the effects of
average ash content on uncertainty of emissions from power sector
decreased in the provincial inventory. Similarly, the penetrations of
various dust collector types on cement production were much
clearer in the provincial inventory, resulting in less uncertainty of
particle emissions for the sector. The uncertainties of Nanjing's
emissions were not considerably reduced compared to the pro-
vincial emissions for most cases. The uncertainty of industrial CO
emissions was even enhanced, resulting mainly from the poor
quantification of emission factors for the intensively distributed
refinery plants in the city.

Fig. 5 compares the central estimates of Jiangsu's emissions (at
provincial level) by this workwith those of other studies. As limited
informationwas available for the same year as this work (2012), the
results for 2010 and 2014 were included for comparisons as well.
Those inventories were developed either at national scale (MEIC;
Xia et al., 2016) or regional scale (Fu et al., 2013; Shanghai Research
Academy of Environmental Science, SRAES). It can be seen that
most estimates are within the 95% CIs calculated in the current
study for gaseous pollutants, BC and OC. Inter-annual variability
could partly explain the lower estimates by SRAES and Fu et al.
(2013). Different data sources (in particular the penetrations and
removal rates of emission control technologies) in multiple-scale
inventories also contributed to the discrepancies in emission esti-
mates. For PM10 and PM2.5, emissions from other studies were
much smaller than this work at provincial level, even out of the 95%
CIs around the central estimates. This large discrepancy came
mainly from the difference in the removal rates of dust collectors
used in various inventories. While all other studies applied the
national/regional averages of dust removal rates based on limited
test samples to calculate the emissions, the plant-specific data
obtained from on-site investigations generally implied much lower
removal rates for the province, leading to larger emission estimates
in the provincial inventory. The comparison revealed the impor-
tance of developing and applying local emission factors on estab-
lishment of high-resolution emission inventory whenever possible.

4.4. Implication of air quality research

Besides the bottom-upmethodology, “top-down” estimations in
emissions of gaseous pollutants have also been made through in-
verse methods that apply satellite observation and/or chemistry



Fig. 4. The distributions of SO2 (a) and NOX (b) emissions from power plants in Jiangsu in 2012, using Monte-Carlo simulation. The red and black bars represent the results from the
national and provincial inventories, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Comparisons of Jiangsu's annual emissions from different studies. The range line represents the 95% CIs around the central estimates of the provincial inventory by this work.
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transport modeling. Difference between results from the two
methods thus implied the uncertainty of current emission in-
ventories to some extent. While earlier studies provided relatively
big gaps between the bottom-up and top-down NOX estimates for
China (e.g., Wang et al., 2004; Ma et al., 2006), the difference ten-
ded to be smaller in later studies for east China. Based on the
observed tropospheric column densities of NO2 from Global Ozone
Monitoring Experiment (GOME), NOX emissions from fuel
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combustion in east China were expected to be underestimated by
15% through GEOS-Chem modeling (Wang et al., 2007). With the
observed NO2 from Ozone Measuring Instrument (OMI), NOx
emissions from fossil fuel combustion were expected to be over-
estimated by 13% using a regional chemical transport model
(REAM) by Zhao and Wang (2009). Lin et al. (2010) combined OMI
and GOME data and estimated NOX emissions at 5.5 TgN/yr for east
China through GEOS-Chem, very close to those from bottom-up
method (5.7 TgN/yr). For CO, GEOS-Chem and Measurement of
Pollution in the Troposphere (MOPITT) were applied to estimate
the emissions for the whole country (Tanimoto et al., 2008;
Yumimoto et al., 2014), and the discrepancies were ranged 2e25%
relative to the bottom-up estimates for multiple years between
2005 and 2010. All those results werewithin the uncertainty ranges
(expressed as 95% CI) provided in this study. It should be noted that
discrepancies between top-down and bottom-up methods might
vary considerably across regions, and that the uncertainty analysis
of sectors other than industry were not effectively improved at
provincial and city levels in this study compared to previous one
(Zhao et al., 2011). In addition, uncertainty in top-down estimations
would result from systematic and random errors in the retrievals of
satellite data and the uncertainties of chemistry transport model
related to the assumptions on diurnal profiles of emissions, natural
emissions (soil and lightning, etc), and planetary boundary layer
mixture scheme. For example, differences in systematic errors be-
tween individual retrievals might lead to underestimation in top-
down emissions of NOX by at most 17%, and the standard devia-
tion was estimated at 13% from the best top-down estimate,
attributed to the impacts of factors associated with errors and
uncertainties in GEOS-Chem (Lin et al., 2010). Such limitations
prevented better comparisons between the emission estimates
from different approaches. Besides the regional emissions, emis-
sion burdens from top-down method have also been estimated for
individual power plants recently (Wang et al., 2015; Liu et al., 2016).
Liu et al. (2016) found the difference relative to bottom-up esti-
mates for NOX was within 30% for most concerned plants, close to
95% CIs of power sector emissions in this work. Based on OMI
observation, Wang et al. (2015) estimated the average removal
equivalence of SO2 was 56.0%, substantially lower than the official
report (74.6%) for selected 26 power plants across China. The result
suggested a 42% underestimation on SO2 emissions from power
sector applying the national average of SO2 removal rate, within the
95% CIs of power sector emissions estimated at national level in this
work.

At city scale, “top-down” constraints expressed as correlations
of certain pairs of pollutants were derived from observed ambient
concentrations and then applied for evaluating the “bottom-up”
estimates of primary emissions for Nanjing (Zhao et al., 2015). In
this work, we analyzed the uncertainties of primary emission ratios
of BC to CO and OC to BC, combining current available information
Table 5
The emissions of BC, OC and CO by source category and the ratios of BC to CO and OC to

Total Industrya Tr

Emissions in Gg Emissions in Gg (95% CIs)

BC 5,436 2,514 (�45%, 82%) 19
OC 7,567 4,253 (�34%, 96%) 71
CO 916,004 767,811 (�23%, 75%) 10

Ratio (95% CIs) The contribution to the uncertain

BC/CO 0.0074 (0.0033, 0.0113) 25%, 36% 24
OC/BC 1.39 (0.79, 2.92) 25%, 20% 2%

a This work.
b Taken from Zhao et al. (2015).
on uncertainties of Nanjing emissions by sector. As shown in
Table 5, emissions and their uncertainties of industrial sector were
taken from current work, and emissions from residential and
transportation sectors were kept unchanged from Zhao et al.
(2015). As little progress was made to improve the uncertainty
analysis of city-scale emissions from the latter two sectors, the
relative ranges around the central estimates for national inventory
were applied (Zhao et al., 2011). For fugitive dust, lognormal dis-
tributions with a CV at 100% was tentatively assumed to reflect the
highly uncertain estimates. With 10,000 Monte-Carlo simulations,
the 95% CIs of BC to CO and OC to BC emission ratioswere calculated
at 0.0033e0.0133 and 0.79e2.92, with central estimates at 0.0074
and 1.39, respectively. In contrast, the “top-down ”constraints from
ground observation were 0.0084 and 1.59, respectively, i.e., they
were 14% larger than the bottom-up ratios, and within the 95% CIs.
It should be noted that uncertainty also existed in the method of
“top-down” constraint estimation. For example, the uncertainty of
BC to CO emission ratio derived from observation was estimated at
20%, as the wet, dry deposition and chemistry of the species could
not be fully understood (Wang et al., 2011; Zhao et al., 2015).
Moreover, the primary OC to BC emission ratio was estimated with
a semi-quantitative method, EC-tracer method. The determination
of the ratio was arbitrary and unable to obtain single OC to BC ratio
that represented a mixture of primary sources varying in time and
space. Errors could be caused by the occasional irregular contri-
butions from sources with a primary OC to EC ratio vastly different
from the usual mix of sources (Cui et al., 2015). Therefore, the
comparison between the bottom-up and top-down estimates
needed to be interpreted with caution. Judged by the contribution
to the variance of emission ratio, industrial CO and BC emissions
were identified to be most significant to the uncertainty of primary
BC to CO ratio, with the contribution to variance calculated at 36%
and 25%, respectively. Industrial OC, fugitive OC, and industrial BC
emissions were identified to be most significant to uncertainty of
primary OC to BC, with the contribution to variance at 25%, 23%, and
20%, respectively. The result highlighted the importance of indus-
trial emissions on the “bottom-up” emission ratio estimates.

5. Conclusion

Uncertainties of multi-scale emission inventories based on
different methods and data sources were quantified with a modi-
fied Monte-Carlo simulation framework for mainland China,
Jiangsu, and Nanjing. Although the completeness of data were
improved from national to provincial and city scales, the un-
certainties of total emissions were not significantly reduced for
most species, with an exception of SO2. Nevertheless, the emission
uncertainties of certain species for given sources (e.g., SO2 and NOX
from power plants and other industrial boilers) were reduced at
local scales compared to those at national scale. Plant-specific
BC emissions for Nanjing 2012.

ansportationb Residentialb Fugitive dustb

10 (�75%, 89%) 296 (�47%, 259%) 716 (�86%, 261%)
9 (�68%, 98%) 685 (�54%, 148%) 1909 (�86%, 261%)
1,038 (�34%, 56%) 47,155 (�50%, 102%) e

ty of emission ratio (BC, CO for BC/CO; OC, BC for OC/BC)

%, 1% 2%, 1% 11%, 0%
, 18% 1%, 2% 23%, 9%
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information on emission factors was identified to be crucial for the
uncertainties of emissions for those source categories. The results
indicated the importance of better understanding on emission
characteristics of individual plants when emission inventory was
developed using a “plant-based”method. Such experience could be
extended to other regions/cities with similar economic and in-
dustrial structures. Due to lack of sufficient field measurements,
however, the plant-specific emission factors for all species were
still unavailable at local spatial scale for other industrial sources,
and technology-based emission factors had to be assigned for all
the plants of the same manufacturing technology types, without
independent uncertainty assumptions. Moreover, the uncertainty
analysis for sectors other than industry at provincial and city scales
could hardly be improved, as data from current available statistics
or investigations could not better differentiate the emission char-
acteristics by source type or provide detailed information on errors
of activity data and emission factors. Those limitations motivated
more detailed on-site investigations and field measurements on
typical emission sources for further improving the emission esti-
mates at local scales.
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