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Abstract. We conducted simulations using the Weather

Research and Forecasting model coupled with Chemistry

(WRF-Chem) version 3.5 to study air quality in East Asia at

a spatial resolution of 20 km× 20 km. We find large discrep-

ancies between two existing emissions inventories: the Re-

gional Emission Inventory in ASia version 2 (REAS) and the

Emissions Database for Global Atmospheric Research ver-

sion 4.2 (EDGAR) at the provincial level in China, with max-

imum differences of up to 500 % for CO emissions, 190 %

for NO, and 160 % for primary PM10. Such discrepancies

in the magnitude and the spatial distribution of emissions

for various species lead to a 40–70 % difference in surface

PM10 concentrations, 16–20 % in surface O3 mixing ratios,

and over 100 % in SO2 and NO2 mixing ratios in the pol-

luted areas of China. WRF-Chem is sensitive to emissions,

with the REAS-based simulation reproducing observed con-

centrations and mixing ratios better than the EDGAR-based

simulation for July 2007. We conduct additional model sim-

ulations using REAS emissions for January, April, July, and

October of 2007 and evaluate simulations with available

ground-level observations. The model results illustrate clear

regional variations in the seasonal cycle of surface PM10

and O3 over East Asia. The model meets the air quality

model performance criteria for both PM10 (mean fractional

bias, MFB 6±60 %) and O3 (MFB 6±15 %) at most of the

observation sites, although the model underestimates PM10

over northeastern China in January. The model predicts the

observed SO2 well at sites in Japan, while it tends to overesti-

mate SO2 in China in July and October. The model underesti-

mates observed NO2 in all 4 months. Our study highlights the

importance of constraining emissions at the provincial level

for regional air quality modeling over East Asia. Our results

suggest that future work should focus on the improvement

of provincial-level emissions especially estimating primary

PM, SO2, and NOx .

1 Introduction

Many Asian countries have faced deteriorating air quality

since the late 1990s and early 2000s due to rapid economic

development and population growth. According to the lat-

est World Health Organization (WHO) ambient air pollution

database (WHO, 2014), air quality in China and India was

ranked 14th and 9th, respectively, out of the 91 most pol-

luted countries. Since these countries have the largest pop-

ulation in the world, exposure to air pollutants poses health

risks to billions of residents. For example, Chen et al. (2013)

reported that outdoor air pollution in China alone caused ap-

proximately half a million premature deaths every year. A

similar number of premature deaths was estimated in India

in 2010 (HEI, 2013). Air pollution not only impacts human
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health, but also has important potential consequences for nat-

ural ecosystems, crop yields, visibility, and radiative forc-

ing (Seinfeld and Pandis, 2006). In order to mitigate these

negative consequences, it is essential to have a better under-

standing of air pollutant emissions sources and magnitudes,

as well as atmospheric transport and chemical composition

over the region.

Several modeling studies have applied the Weather Re-

search and Forecasting model coupled with Chemistry

(WRF-Chem) (Grell et al., 2005) to study air quality in Asia.

Saikawa et al. (2011) analyzed the impact of China’s vehicle

emissions on air quality both within China and across East

Asia. They found that stricter regulation of the road transport

sector in China would reduce surface concentrations of fine

particulate matter with an aerodynamic diameter of 2.5 µm

or less (PM2.5) and tropospheric ozone (O3) mixing ratios in

the region. Kumar et al. (2012) examined ground-level mea-

surements and satellite observations in South Asia and re-

ported that WRF-Chem could simulate O3 and CO well, but

large discrepancies were found for NO2 due to uncertainties

in emissions from biomass burning and anthropogenic NOx

estimates. Wang et al. (2010) conducted sensitivity analy-

ses of O3, NOx , and sulfur dioxide (SO2) mixing ratios to

temporal and vertical emissions; their results showed that air

quality in East Asia was impacted by the diurnal and ver-

tical distribution of anthropogenic emissions. Studies that

have conducted WRF-Chem modeling for PM2.5 and PM10

have found that these surface concentrations were usually un-

derestimated. For example, Saikawa et al. (2011) reported

that modeled 4-month average PM2.5 concentrations at Oki

and Rishiri in Japan had a mean normalized bias (MNB) of

−34 % compared to observations. Gao et al. (2014) com-

pared simulated and measured PM10 concentrations at six

sites in Japan and found that the model underestimated the

annual average PM10 at all sites except one.

One of the possible reasons that models underestimate

particulate matter (PM) concentrations is the uncertainty in

emissions. Several emissions inventories for Asia have been

developed by different groups, each with different purposes

and characteristics (Kurokawa et al., 2013; JRC and PBL,

2010; Streets et al., 2003; Klimont et al., 2011). Comparison

of the emissions inventories has revealed large differences in

these emissions estimates. Kurokawa et al. (2013) compared

different emissions inventories for several provinces in China

and found that the difference in primary organic carbon emis-

sions can be as high as 140 %. The possible causes of such

discrepancies among emissions inventories are differences in

estimates of (1) activity level, (2) level of technologies im-

plemented, and (3) emissions factors. Since it is hard to mea-

sure emissions factors of each individual source at the scale

of a province or a country, uncertainties arise when emissions

factors from one place are applied to another. Activity data or

emissions factors are often not available at the level of detail

required for making insightful comparisons across emissions

inventories.

While comparison of emissions inventories has revealed

notable differences in the emissions estimates, few studies

have addressed to what extent uncertainty in the emissions

inventories really matters for the outcome of air quality mod-

eling studies. Ma and van Aardenne (2004) compared simu-

lated surface O3 mixing ratios over China using three dif-

ferent emissions inventories as model inputs, and found that

surface O3 differed as much as 30–50 % among different

model simulations. They also demonstrated that the differ-

ences in NOx and non-methane volatile organic compounds

(NMVOCs) among different inventories were dominant fac-

tors for the discrepancies in simulated O3 mixing ratios. Am-

nuaylojaroen et al. (2014), on the other hand, studied the ef-

fect of different anthropogenic emissions inventories on air

quality over Southeast Asia and found only a small difference

in simulated O3 (about 4.5 %) and CO (about 8 %) mixing ra-

tios. However, these studies did not investigate the impact of

emissions inventories on other pollutant species such as PM.

Unlike the previous studies, which focused on uncertainties

of simulated O3, CO, and NOx , this study provides quanti-

tative information on how emissions inventories impact PM

and other pollutants including SO2.

The first objective of this paper is to study the sensitivity

of regional air quality to emissions. We select two commonly

used anthropogenic emissions inventories for comparison:

the Regional Emission Inventory in ASia version 2 (REAS)

(Kurokawa et al., 2013) and the Emissions Database for

Global Atmospheric Research version 4.2 (EDGAR) (JRC

and PBL, 2010). By comparing the 2-week model simula-

tions using these two emissions inventories and observations

from July 2007, we select the REAS inventory to perform air

quality simulations over East Asia in different seasons. The

second objective is to evaluate the simulated PM10 concen-

trations, as well as O3, SO2, and NOx mixing ratios from

four 1-month WRF-Chem runs against ground-level obser-

vations to build confidence in its ability to simulate future

air quality over this region. WRF-Chem is an online-coupled

meteorology and chemistry model, simulating meteorolog-

ical quantities and air pollution concentrations simultane-

ously and allowing two-way interactions between meteoro-

logical and chemical constituents. In regions with high PM

loading, meteorology–chemistry interaction significantly im-

proves model performance in simulating air pollutant con-

centrations (Kong et al., 2015). So far, many of the WRF-

Chem studies that focused on China conducted limited model

evaluation due to the scarcity of observations in the region.

This study compares the model simulations to observations

from more than 70 sites in China to evaluate the model. There

are some studies that have compared simulation results us-

ing a different chemical transport model (i.e., the Community

Multi-scale Air Quality Model), but as far as we are aware,

few studies have used as extensive a network of PM10 ob-

servations for WRF-Chem validation in this region as ours

has.
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This paper is organized as follows. Section 2 explains the

regional air quality model (WRF-Chem) configuration, emis-

sions used for the model, observations used for validation,

and data analysis methods. Section 3 analyzes the differences

in emissions inventories and the sensitivity of simulated pol-

lutant concentrations to the inventory used. Section 4 eval-

uates model performance by comparing observations with

model simulations. Section 5 presents a summary of results

and suggestions for future research.

2 Model and observations description

2.1 Model description

We use the fully coupled “online” regional chemical trans-

port model WRF-Chem version 3.5 (Grell et al., 2005)

in this study. The Regional Acid Deposition Model ver-

sion 2 (RADM2) atmospheric chemical mechanism (Stock-

well et al., 1990) is used for gas-phase chemistry. Aerosol

chemistry is represented by the Model Aerosol Dynam-

ics for Europe with the Secondary Organic Aerosol Model

(MADE/SORGAM) (Schell et al., 2001; Ackermann et al.,

1998) with some aqueous reactions. This aerosol mechanism

is widely used in regional atmospheric chemistry models

(Saikawa et al., 2011; Gao et al., 2014; Tuccella et al., 2012;

Kumar et al., 2012). It predicts the mass of seven aerosol

species (sulfate, ammonium, nitrate, sea salt, black carbon

(BC), organic carbon (OC), and secondary organic aerosols),

using three log-normal aerosol modes (Aitken, accumula-

tion, and coarse). Aerosol dry deposition is simulated fol-

lowing the approach of Binkowski and Shankar (1995) and

the wet removal approach follows Easter et al. (2004) and

Chapman et al. (2009). Photolysis rates are obtained from the

Fast-J photolysis scheme (Wild et al., 2000). We include the

aerosol-radiative feedback in our simulation. The rapid ra-

diative transfer model (RRTM) scheme (Mlawer et al., 1997)

is used to represent both shortwave and longwave radiation.

The horizontal winds, temperature, and moisture are nudged

to 2007 meteorological fields at all vertical levels. The 2007

meteorological data are obtained from the National Center

for Environmental Prediction (NCEP) Global Forecast Sys-

tem final gridded analysis data sets. We use the Lin et al.

(1983) microphysics scheme and the Grell-3d ensemble cu-

mulus parameterization (Grell and Dévényi, 2002).

The model domain, shown in Fig. 1, covers most of the

East and South Asia region with 398× 298 grid cells, us-

ing a 20 km spacing and a Lambert conformal map projec-

tion centered on China at 32◦ N, 100◦ E. There are 31 ver-

tical levels from the surface to 50 mb. The initial and lat-

eral boundary conditions are taken from a time-slice simu-

lation of Geophysical Fluid Dynamics Laboratory (GFDL)

coupled chemistry-climate model AM3 (Donner et al., 2011;

Naik et al., 2013) for the year 2010 following the configu-

ration described by Naik et al. (2013). This AM3 simulation

Figure 1. WRF-Chem model domain and observation sites. Blue

shading indicates locations where the REAS emissions inventory

is used. Gray shading indicates where the RCP8.5 emissions are

used. For the entire model domain, biomass burning emissions from

GFED v3 and biogenic emissions from POET v1 are used. Red-

filled circles denote the observational sites with PM10; orange trian-

gles sites with O3; purple crosses sites with SO2; and green squares

sites with NO2.

was driven by climatological mean sea surface temperature

and sea ice distributions for the 2006–2015 time period de-

rived from the transient GFDL coupled model (GFDL-CM3)

simulations following Representative Concentration Path-

way 8.5 (RCP8.5) (John et al., 2012). Concentrations of well-

mixed greenhouse gases and ozone-depleting substances,

and emissions of short-lived pollutants (ozone precursors and

aerosols) were set to year 2010 values in RCP8.5. We simu-

late air pollutant concentrations for the central month of each

season (January, April, July, and October) in 2007, to assess

seasonal variability in air quality. The model is spun up for 7

days before the beginning of each monthly simulation. This

is sufficient to ventilate our regional domain.

2.2 Emissions

The anthropogenic emissions of gaseous pollutants (CO,

NOx , NH3, SO2, and NMVOCs) and particulate matter (BC,

OC, PM2.5, and PM10) are taken from REAS (Kurokawa

et al., 2013). REAS covers most of the model domain (see

Fig. 1, regions in blue). For the areas of our domain that are

not covered by the REAS emissions inventory, we use the

RCP8.5 emissions data set for the year 2010 (Riahi et al.,

2011). The RCP8.5 emissions data set has been used in many

studies for air quality simulations (Gao et al., 2013; Colette

et al., 2013; Fry et al., 2012). For emissions from biomass

burning, we use the year 2007 from the Global Fire Emis-

sions Database version 3 (GFED) (Randerson et al., 2013).

For biogenic emissions of CO, NOx , and NMVOCs, as well

as aircraft emissions of CO, NOx , and SO2, we use the Pre-

www.geosci-model-dev.net/9/1201/2016/ Geosci. Model Dev., 9, 1201–1218, 2016
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Table 1. List of total emissions for major pollutants from REAS and EDGAR over the model domain in July 2007. Unit is Tg month−1.

Emissions inventory PM10 CO SO2 NOx NMVOCs NH3

REAS 2.73 25.05 4.62 4.61 3.67 2.61

EDGAR 3.07 21.25 4.62 3.33 4.56 1.69

Figure 2. Monthly emissions difference of PM10, CO, SO2, and NOx between REAS and EDGAR in July 2007 in our model domain.

cursors of Ozone and their Effect on the Troposphere ver-

sion 1 (POET) emissions inventory (Granier et al., 2005).

Dust and sea salt emissions are calculated online using the

dust transport model (Shaw et al., 2008) and sea salt (Gong,

2003) schemes, respectively.

To study the influence of anthropogenic emissions inven-

tories on air quality simulation, we conducted a sensitivity

simulation using the EDGAR (European Commission Joint

Research Centre, 2010) inventory, as described in Sect. 3.

EDGAR does not provide BC, OC, and PM2.5 emissions,

and thus this study only compares simulated O3 and PM10.

NMVOCs in EDGAR are also not speciated, so we di-

vided them into 17 chemical species, using weighting fac-

tors calculated from REAS. The total anthropogenic emis-

sions of each air pollutant within the model domain as es-

timated in REAS and EDGAR for July 2007 are listed in

Table 1. We apply the same diurnal variation to both REAS

and EDGAR based on the East Asian Air Pollutant Emis-

sion Grid Database (EAGrid2000, http://www.cger.nies.go.

jp/db/eagrid/eagrid_index_e.html). The ratios used to create

hourly emissions for different pollutants are presented in Ta-

ble S1 in the Supplement. The REAS emissions inventory

provides monthly emissions for each pollutant, while the

Geosci. Model Dev., 9, 1201–1218, 2016 www.geosci-model-dev.net/9/1201/2016/
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Figure 3. Percentage difference of 14-day mean PM10, O3, SO2, and NO2, between WRF-Chem simulations with REAS emissions (WRF-

Chem–REAS) and EDGAR emissions (WRF-Chem–EDGAR).

EDGAR emissions inventory provides only yearly emissions

estimates.

2.3 Observations

The surface concentrations of PM10 in China are derived

from the Air Pollution Index (API) from the website of the

Ministry of Environmental Protection of the People’s Repub-

lic of China. When PM10 is reported as the primary pollutant

with a maximum pollutant index, daily PM10 concentrations

are calculated from the API, using the following equation:

C = [(I − Ilow)/(Ihigh− Ilow)]× (Chigh−Clow)+Clow, (1)

where C is the daily concentration of PM10, I is the API

reported, Ilow and Ihigh are the lower and upper API break-

points that I falls within, and Clow and Chigh are the PM10

concentrations corresponding to Ilow and Ihigh. Values of

Ilow, Ihigh, Clow, and Chigh are described for different API

levels, as shown in Table S2. Qu et al. (2010) have shown

that API-derived PM10 concentrations are generally compa-

rable to those from filter sampling, although the latter tends

to be approximately 10 % higher than API-derived PM10. As

mentioned earlier, the derived concentrations from API have

been used for the evaluation of a different chemical trans-

port model in previous studies (Wang et al., 2009; Liu et al.,

2010).

The observed PM10 concentrations in Nepal are obtained

from the Godavari station, located at the southern edge of

the Kathmandu Valley (Ramanathan et al., 2007; Stone et al.,

2010). We are unable to evaluate PM2.5 against measure-

ments for 2007 since PM2.5 measurements in China started

in late 2012. The observed PM10, O3, and SO2 in Japan and

SO2 and NO2 in China are taken from the Acid Deposi-

tion Monitoring Network in East Asia (EANET). The surface

mixing ratios of O3 in Mt. Lulin are taken from the Lulin At-

mospheric Background Station (LABS, 2862 m above mean

sea level) in central Taiwan (Ou Yang et al., 2012). The de-

scription of each site is listed in Table S3a–b; the locations

of these sites are shown in Fig. 1.

www.geosci-model-dev.net/9/1201/2016/ Geosci. Model Dev., 9, 1201–1218, 2016
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Figure 4. Simulated and observed monthly average surface PM10 in 2007 using WRF-Chem–REAS. The filled circles indicate the observed

monthly average values.

2.4 Data analysis method

We assess the model performance using the correlation co-

efficient (r), the normalized mean bias (NMB), the mean

fractional bias (MFB), the mean fractional error (MFE), and

the normalized mean square error (NMSE) between the ob-

served (Obs) and modeled (Model) concentrations. The per-

formance evaluation is based on monthly and yearly statis-

tics using the daily mean values at each site, each region,

and all sites. Following Boylan and Russell (2006), we set

the performance goals of PM10 as MFB less than or equal

to ±30 % and MFE less than or equal to 50 %. The perfor-

mance criteria of PM10 are MFB 6±60 % and MFE 6 75 %.

For O3, we use the performance benchmark MFB 6±15 %

and MFE 6 35 %, as recommended by Morris et al. (2005).

3 Sensitivity to emissions

To better understand the effect that anthropogenic emissions

have on regional air quality simulations, we conducted two

simulations in which REAS and EDGAR are used as separate

inputs. In the following sections, we compare the major pol-

lutant emissions estimated in REAS and EDGAR, followed

by comparisons of resulting air quality simulations.

3.1 Emission comparisons

Table 1 summarizes the total emissions of major air pollu-

tants over the model domain in July 2007 for air pollutant

precursors. Both REAS and EDGAR estimate similar total

SO2 emissions of 4.62 Tg month−1. We note that this simi-

larity is purely coincidental and depends on the domain. In

certain parts of the domain the REAS estimate is higher than

that of EDGAR, while the opposite is true for other parts of

the domain. When averaged over the whole domain, both in-

ventories produce similar estimates (Fig. 2). We, however,

find large discrepancies between REAS and EDGAR esti-

mated emissions for total NH3 (53 %) and NOx (27 %). For

CO, NH3, and NOx , REAS estimates are higher than those

of EDGAR, while for PM10 and NMVOCs, the opposite is

the case. Figure 2 illustrates the difference in the spatial dis-

tribution and magnitude of emissions between REAS and

EDGAR for PM10, CO, SO2, and NOx in our model domain.

Although the total emissions within the domain for many of

the species are comparable between the two inventories, the

Geosci. Model Dev., 9, 1201–1218, 2016 www.geosci-model-dev.net/9/1201/2016/
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Figure 5. Comparisons of simulated and observed daily mean PM10 (µg m−3) in northeastern, northern, northwestern, and central China in

each month. The model to observation ratios of 2 : 1, 1 : 1, and 1 : 2 are represented by orange lines. Monthly average performance statistics

(r , MFB, and MFE) are listed.

national and regional differences are large. REAS estimates

are uniformly higher than those of EDGAR in northern, east-

ern, and southern China for all four species and in most parts

of India for NOx and CO. For PM10 and CO, EDGAR esti-

mates are higher in most areas of South and Southeast Asia,

as well as in Japan and South Korea. Table S4 compares

the differences in provincial emissions between REAS and

EDGAR in China. For example, we find that REAS esti-

mates 150 % higher PM10 and 548 % higher CO emissions

than EDGAR in Hebei province.

3.2 Simulation comparisons

For the convenience of discussion, we refer to the simulation

with REAS emissions as WRF-Chem–REAS and the simula-

tion using EDGAR emissions as WRF-Chem–EDGAR. Fig-

ure 3 illustrates the differences in the 14-day mean PM10,

O3, SO2, and NO2 simulated from 1 to 14 July 2007.

The difference is presented as the percentage difference in

concentrations or mixing ratios relative to those simulated

in WRF-Chem–EDGAR. The pattern of the difference for

these species is similar to that of the emissions difference.

WRF-Chem–REAS simulates 40–70 % higher surface PM10

in most areas of the North China Plain (Beijing, Tianjin,

Hebei, Henan, Shandong provinces). This difference, around

35 µg m−3 or higher, is comparable to the PM10 levels in

many sites in Japan (Table 3). The highest difference (70 %)

occurs in Shandong province and the lowest difference (less

than±5 %) is found in southwestern and northwestern China

(Table S4). WRF-Chem–EDGAR simulates higher PM10

than WRF-Chem–REAS around Cambodia, Vietnam, and

Thailand. For surface O3, a moderate difference of 16–20 %

(approximately 12–16 ppbv) is found over the North China

Plain, the Yangtze River Delta, central China, and eastern

Pakistan. WRF-Chem-REAS also results in higher SO2 and

NO2 (more than 10 ppbv) in these areas than WRF-Chem–

EDGAR. The largest discrepancies, over 100 %, occur in

www.geosci-model-dev.net/9/1201/2016/ Geosci. Model Dev., 9, 1201–1218, 2016
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Table 2. Statistical measures calculated for model simulations using REAS and EDGAR as emissions inputs for PM10, O3, SO2, and NO2. r

is the correlation coefficient between observations and model simulations; NMB (%) is the normalized mean bias between observations and

model simulations; MFB (%) and MFE (%) are the mean fractional bias and mean fractional error; NMSE is the normalized mean square

error between the observations and model.

Pollutant REAS EDGAR

r NMB MFB MFE NMSE r NMB MFB MFE NMSE

PM10 0.38 −2.04 −11.49 46.42 0.36 0.20 −27.28 −37.34 56.70 0.58

O3 0.83 19.11 24.50 30.95 0.10 0.82 19.20 25.24 32.33 0.10

SO2 0.72 138.64 51.60 84.93 3.58 0.64 98.42 70.38 94.09 2.03

NO2 0.68 −18.32 −22.50 50.98 0.41 0.66 −59.88 −71.52 83.05 1.57

Table 3. Statistical performance of WRF-Chem–REAS simulations for PM10 in 2007. Count is the total number of observations for calcula-

tion; Obs (µg m−3) and Model (µg m−3) are 4-month mean daily average value of observations and model simulations, respectively. Other

indicators and associated units are described in Table 2.

Region Count Obs Model r NMB MFB MFE NMSE

Central China 726 117.45 114.21 0.32 −2.75 −5.23 40.47 0.25

Eastern China 1908 103.05 102.41 0.28 −0.63 −3.85 38.05 0.31

Northern China 1068 116.35 105.35 0.30 −9.45 −11.52 43.65 0.39

Northeastern China 826 119.07 87.83 0.39 −26.24 −41.15 61.26 0.59

Northwestern China 462 126.86 105.80 0.13 −16.60 −16.54 53.39 0.95

Southern China 452 82.74 68.97 0.18 −16.64 −22.27 44.68 0.31

Southwestern China 934 95.24 63.13 0.35 −33.72 −47.61 59.21 0.51

Japan 409 25.44 20.83 0.27 −18.10 −32.34 65.24 2.00

Nepal 89 49.63 21.15 0.29 −57.38 −47.89 75.07 2.10

All sites 6874 102.46 89.15 0.39 −12.99 −19.95 48.40 0.46

Guizhou (220 %) and Yunnan (175 %) provinces for SO2,

and in Shanghai (258 %) and Shandong (118 %) provinces

for NO2.

Table 2 summarizes the statistical measures of model sim-

ulations using these two anthropogenic emissions inventories

against observations. Both simulations reproduce the tempo-

ral variation of O3, SO2, and NO2 well, with the value of

r between 0.64 and 0.83. The temporal correlation of PM10

for WRF-Chem–REAS (r = 0.38) is higher than that calcu-

lated for WRF-Chem–EDGAR (r = 0.2). In terms of bias,

both simulations produce a similar NMB and MFB for O3.

For PM10, NO2, and SO2, WRF-Chem–REAS has a smaller

MFB than WRF-Chem–EDGAR. In terms of error, MFE and

NMSE from the two simulations are comparable for O3, but

WRF-Chem–REAS results in less MFE and NMSE for PM10

and NO2. According to the model performance goals and

criteria of PM10 suggested by Boylan and Russell (2006),

WRF-Chem–EDGAR meets the performance criteria, while

WRF-Chem–REAS achieves the stricter performance goals.

We have conducted additional sensitivity simulations using

REAS and EDGAR in January and July and compared the

simulated air pollutants and observation. The results of these

2-month simulations (not shown here) agree with what we

find here.

Based on the above performance analyses, we choose

REAS as the anthropogenic emissions inventory to conduct

further simulations for 4 months to explore the seasonality of

air pollutant concentrations. In this paper, we focus on vali-

dating the WRF-Chem model with REAS.

4 Spatiotemporal variations of pollutants and model

evaluation

In this section, we analyze the spatial variability of simu-

lated and observed monthly mean PM10 concentrations, as

well as O3, SO2, and NOx mixing ratios (Figs. 4, 7, 9,

and 10). A color-filled circle overlaid on a model-simulated

monthly average surface concentration map represents the

observed monthly average value at each site. Tables 3–6 de-

scribe yearly statistics for PM10 concentrations, as well as

O3, SO2, and NO2 mixing ratios at individual stations, re-

spectively. Table S7 summarizes seasonal statistics for the

same pollutants at all available stations. The comparisons

between daily modeled and observed concentrations of each

pollutant are given in Figs. 5, 6, 8, and 11 for individual sites.

Detailed analyses of model biases and errors for each of the

species are provided in the following subsections.
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Table 4. Statistical performance of WRF-Chem–REAS simulations for O3 in 2007. The unit of Obs and Model is ppbv. Other statistical

indicators and associated units are described in Table 2.

Location Sites Count Obs Model r NMB MFB MFE NMSE

Japan Happo 81 61.04 55.57 0.55 −8.95 −7.30 20.57 0.06

Hedo 90 39.59 45.79 0.93 15.68 20.60 22.42 0.04

Oki 99 43.72 50.19 0.60 14.81 16.01 20.18 0.06

Rishiri 54 47.14 46.12 0.03 −2.16 −0.92 15.41 0.03

Sado-seki 82 46.24 47.85 0.61 3.48 4.59 12.13 0.02

Tappi 101 51.75 45.95 0.56 −11.21 −9.84 17.65 0.05

Yusuhara 102 42.80 47.68 0.75 11.40 12.75 17.31 0.04

Taiwan Lulin 94 30.89 44.89 0.62 45.34 41.31 44.05 0.23

All sites 703 45.05 47.98 0.67 6.51 10.48 21.62 0.06

Figure 6. Comparisons of simulated and observed daily mean PM10 (µg m−3) in eastern, southwestern, and southern China, and Japan in

each month. The model to observation ratios of 2 : 1, 1 : 1, and 1 : 2 are represented by orange lines. Monthly average performance statistics

(r , MFB, and MFE) are listed.
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Table 5. Statistical performance of WRF-Chem–REAS simulations for SO2 in 2007. The unit of Obs and Model is ppbv. Other statistical

indicators and associated units are described in Table 2.

Location Sites Count Obs Model r NMB MFB MFE NMSE

Japan Happo 65 0.60 0.72 0.53 19.27 20.96 77.56 1.23

Hedo 86 0.51 0.37 0.66 −27.57 −12.17 69.44 1.70

Oki 89 0.85 0.82 0.52 −3.60 29.31 69.73 1.77

Rishiri 50 0.23 0.22 0.71 −2.90 17.84 55.33 0.46

Tappi 97 0.43 0.37 0.65 −13.66 −1.71 51.61 0.78

Yusuhara 99 1.27 1.26 0.82 −0.59 26.55 63.58 0.72

China Xiamen 122 11.79 4.90 0.14 −58.42 −70.79 81.26 1.62

Jinyunshan 123 10.10 17.81 0.50 76.34 62.19 75.48 0.85

Zhuhai 123 6.88 8.16 0.29 18.74 5.27 52.50 0.67

Beijing 123 15.65 21.74 0.32 38.92 63.38 91.86 1.05

Shanghai 123 22.71 30.57 0.38 34.57 20.10 51.59 0.56

All sites 1100 7.80 8.82 0.64 13.06 8.89 65.80 1.52

Figure 7. Simulated and observed monthly average surface O3 in 2007 using WRF-Chem–REAS. The filled circles indicate the observed

monthly average values.

Before analyzing the model performance in simulating air

pollutants, we evaluate the simulated meteorological fields,

including daily mean 2 m temperature, 2 m relative humidity,

and 10 m wind speed against observations from the National

Climate Data Center of China Meteorological Administra-

tion for the year 2007 (Table S5). The model reproduces 2 m

temperature with a correlation of 0.97 and a negative NMB

of −14.57 %. Relative humidity is simulated with a corre-

lation of 0.71 and a positive NMB of 7.02 %. Compared to

temperature and relative humidity, the 10 m wind speed has
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a relatively lower correlation of 0.52 and a higher positive

NMB of 59.35 %. Overall, the model performance in sim-

ulating these meteorological data is similar to that reported

for regional air quality models (Tuccella et al., 2012; Tessum

et al., 2015; Zhang et al., 2015).

4.1 PM10

We obtain ground-level measurements from 1 site in Nepal,

7 sites in Japan, and 71 sites in China. China is divided into

seven geographical regions and measurements are analyzed

based on these regions (Table 3). The coverage of each ge-

ographical region in China is shown in Fig. S1. In China,

the highest 4-month average PM10 is observed in north-

western China (126± 94 µg m−3), followed by northeast-

ern (119± 65 µg m−3) and central China (117± 48 µg m−3),

while the lowest observed PM10 is in southern China

(82± 28 µg m−3). In Japan, the observed 4-month average

PM10 concentration is 27± 33 µg m−3, which is more than 3

times lower than those observed in China.

The model simulates high PM10 concentrations (over

200 µg m−3) near the Gobi Desert in northwestern China

and in the border area near Iran, Afghanistan, and Pakistan

(Fig. 4). In these areas, dust emissions are the predominant

source of PM10 and the anthropogenic primary PM10 is neg-

ligible, as shown in Fig. S2. Besides these areas, the model

simulates high PM10 concentrations (up to 100 µg m−3) over

the North China Plain, the Yangtze River Delta region, and

the Sichuan Basin. The model simulates relatively low PM10

concentrations (lower than 60 µg m−3) in most of southern,

southwestern, and northeastern China, most of India, and

other countries in the model domain. Unlike northwestern

China, where the maximum PM10 concentrations are sim-

ulated in spring, other regions of China are simulated to

have high concentrations in January and October, with low

concentrations in April and July. This is because in winter,

reduced precipitation leads to higher PM10 concentrations,

while the monsoon circulation brings in clean marine air and

dilutes the PM10 surface concentrations in eastern China in

summer. Moreover, aerosols in summer are removed by wet

scavenging due to more frequent precipitation (Zhao et al.,

2010). High concentrations are also simulated in an area sur-

rounding Lhasa in Tibet in January. Since primary anthro-

pogenic emissions in Tibet are low, dust emissions from lo-

cal soils on the plateau are the main reason for high PM10

concentrations. The previous study of tracer element anal-

yses has shown that local dust is the major source of total

particulate matter (PM) over Tibet (Zhang et al., 2001).

For 4-month averaged PM10, the model meets the perfor-

mance criteria at 84 % of observation sites in China. The

model tends to underestimate observations at the rest of the

sites, which are mainly located in northeastern and south-

western China. Analyzing model–observation comparison by

region, we find better model performance in central, east-

ern, northern, and southern China (Table 3). However, north-

Figure 8. Comparisons of observed (blue dots) and modeled (red

lines) daily mean O3 (ppbv) at seven sites in Japan and one site in

Taiwan.

eastern and southwestern China have a higher correlation

(r > 0.35) than others. For sites outside of China, the model

underestimates observations in both Japan (MFB=−32 %)

and Nepal (MFB=−48 %).

The seasonal statistics (Table S6) and Figs. 5–6 indicate

that the model meets the performance criteria in all 4 months

(January, April, July, and October) in central, eastern, north-

ern, and southern China. In the remaining regions in China

and Japan, the model meets or is close to the criteria in April,

July, and October, but has more difficulty reproducing PM10

concentrations in January. Previous research has suggested

that poor model performance in winter is common among air

quality models and may be caused by difficulty in simulat-

ing stagnant weather conditions that lead to high winter PM

concentrations (Tessum et al., 2015). In Nepal, model perfor-

mance in both January and April is poor when the observed

PM10 is high. The time series comparison plots (Fig. S3) re-

veal distinct air pollution episodes occurring in middle Jan-

uary and early April at the Godavari site, which the model

fails to simulate. One of the possible reasons for this is that

the model is unable to reproduce the local meteorology due

to the complicated topography that is not well resolved at

www.geosci-model-dev.net/9/1201/2016/ Geosci. Model Dev., 9, 1201–1218, 2016
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Table 6. Statistical performance of WRF-Chem–REAS simulations for NO2 in 2007. The unit of Obs and Model is ppbv. Other statistical

indicators and associated units are described in Table 2.

Location Sites Count Obs Model r NMB MFB MFE NMSE

China Beijing 123 32.17 18.63 0.47 −42.09 −53.69 58.67 0.48

Shanghai 123 29.45 30.57 0.21 3.81 −9.26 46.65 0.41

Jinyunshan 123 7.04 2.82 0.34 −59.89 −74.42 87.77 2.16

Zhuhai 123 19.42 7.97 0.11 −58.95 −82.08 86.11 1.34

All sites 492 36.78 15.00 0.56 −31.88 −54.86 69.80 0.69

Figure 9. Simulated and observed monthly average surface SO2 in 2007 using WRF-Chem–REAS. The filled circles indicate the observed

monthly average values.

the current horizontal resolution. The temporal correlations

of all sites in each month are similar (0.37–0.39) as shown in

Table S7 and we do not observe obvious trends of temporal

correlation change with seasons.

4.2 O3

Similar to PM10, the simulated O3 over the model domain

also exhibits a seasonal variability that varies by region.

Figure 7 illustrates that the highest O3 mixing ratio (over

70 ppbv) occurs in northern and eastern China in July. This

is because biogenic NMVOC emissions are relatively high

and active photochemical reactions constitute favorable con-

ditions for the build-up of O3 mixing ratios in summer. On

the other hand, a low monthly mean mixing ratio (below

40 ppbv) is found in the same region in January. In the Ti-

betan Plateau, the surface O3 mixing ratio reaches a max-

imum (over 70 ppbv) in April due to high elevations and

downward transport of O3 from the stratosphere, while the

minimum O3 (40 ppbv) is found in July because the upward

transport of air to the stratosphere in the summer suppresses

the downward transport of O3 (Gettelman et al., 2004; Ran-

del et al., 2010). This simulated seasonal variability of O3
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Figure 10. Simulated and observed monthly average surface NO2 in 2007 using WRF-Chem–REAS. The filled circles indicate the observed

monthly average values.

in our model over the Tibetan Plateau is consistent with the

findings of Ma et al. (2014).

The model performs well for simulating O3 at all sites

in Japan, and both MFB and MFE of these sites are

within or close to the model benchmark (MFB <± 15 % and

MFE < 35 %). The model overestimates O3 at Lulin in Tai-

wan. MFB at Lulin (41 %) is more than 2 times higher than

that of any sites in Japan. Statistical analysis of O3 in dif-

ferent seasons at the Lulin site (Table S8) reveals that such

high bias is mainly caused by overestimation in October

(MFB= 63 %). A previous study by Ou Yang et al. (2012)

suggested that Lulin has more pronounced mountain valley

circulation in fall, which leads to low observed O3 mixing

ratios in October. Our model with a horizontal resolution of

20 km× 20 km may not be able to capture such local meteo-

rology. The model reproduces the overall daily temporal vari-

ation of O3 well (r = 0.57) and the value of temporal corre-

lation is also high for each site (0.47–0.93), except at Rishiri.

This is partly due to the lateral boundary conditions, since

this site is located close to the northeastern boundary of the

model domain. The model predicts the seasonal variability

well, as shown in Fig. 8 and Table S7. The modeled and ob-

served monthly mean O3 has a maximum in April and a min-

imum in July. The same seasonal characteristics of O3 levels

were reported before (Yamaji et al., 2006). The MFB and

MFE of all sites in each month are in the acceptable range.

Among the 4 months, the model tends to underestimate the

highest observations in April, while it overestimates obser-

vations in the other 3 months.

4.3 SO2 and NO2

Figure 9 illustrates that the model simulates a high monthly

mean SO2 mixing ratio (higher than 20 ppbv) over urban

areas in northern China (including Beijing, Tianjin, Hebei,

and Shanxi) and some provinces in eastern China (including

Shandong and Henan), where emissions are also the highest.

In these areas, the mixing ratios are the highest in January,

followed by October, April, and July (Fig. 9). The lowest

mixing ratios in our model simulation are found in July due

to more active oxidation of SO2 by hydroxyl radical (OH)

and O3 in the gas phase, as well as frequent precipitation

that favors aqueous-phase oxidation of SO2 (Feichter et al.,

1996). Overall, the model predicts SO2 well, with a MFB of

9 % and r of 0.64. The model performs better in predicting

observed SO2 mixing ratios at sites in Japan (MFB=−12
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Figure 11. Comparisons of observed (blue dots) and modeled (red lines) daily mean SO2 (ppbv) at six sites in China and Japan and NO2

(ppbv) at three sites in China.

to 29 %, r = 0.52–0.82) than in China (MFB=−70 to 63 %,

r = 0.14–0.5). The lowest overall MFB value of all sites oc-

curs in April (8 %), while the highest happens in July (31 %).

Although MFB values are acceptable, both the MFE and

NMSE in July and October are high. The site that contributes

most to high errors is Beijing, with a MFE of more than

115 % in these 2 months. The model largely overestimates

SO2 in Beijing (Fig. 11), probably because the REAS emis-

sions inventory did not take into account the local emissions

control policies for the Beijing Olympics. In 2007, the Chi-

nese government reduced anthropogenic emissions by shut-

ting down many polluting industries, banning high-emission

vehicles, and restricting the number of on-road vehicles in

Beijing (Zhang et al., 2012). It is likely that our emissions

were overestimated in Beijing, which caused a large discrep-

ancy between modeled and observed SO2 mixing ratios.

The spatial and seasonal distribution of NO2 is similar to

SO2 as shown in Fig. 10. A high NO2 mixing ratio is found

over northeastern, northern, and eastern China due to high

emissions from the power plant, industry and transportation

sectors in these regions. Outside China, several hotspots are

identified, such as Seoul (South Korea) and New Delhi (In-

dia). The modeled NO2 mixing ratios have a summer min-

imum and a winter maximum. The lifetime of NO2 in win-

ter is relatively longer (18–24 h) than that in summer (6 h)

because the concentration of hydroxyl radical (OH) in the

atmosphere is low (Beirle et al., 2003). Consequently, the re-

moval reaction of NO2 with OH radicals to form HNO3 is

less active in winter than in summer. Among the four sites in

China, the model performs well in predicting observed NO2

mixing ratios at the Shanghai site (MFB=−9 %); however,

it underestimates at the other three sites (MFB >−53 %).

WRF-Chem captures the seasonal variability of NO2, but un-

derestimates the monthly average of NO2, with a MFB be-

tween −41 and −68 % for all 4 months. Underestimation of

NO2 has also been reported in the South Asian region us-

ing WRF-Chem (Kumar et al., 2012) and a possible reason

was proposed as the underestimation of NOx emissions from

biomass burning or anthropogenic sources. Another potential

reason is that the removal of NOx was overestimated through

the heterogeneous reaction of N2O5 to form nitric acid in the

RADM2 WRF-Chem chemical mechanism (Yegorova et al.,

2011), used in this study.

5 Conclusions

We performed WRF-Chem simulation of air quality over

East and South Asia using two different anthropogenic emis-

sions inventories and evaluated the model performance for

PM10 concentrations, as well as O3, SO2, and NO2 mixing

ratios, using ground-level observations for the year 2007.

We find that large discrepancies exist between the exten-

sively used EDGAR global anthropogenic emissions and the
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REAS regional inventory at national and provincial scales.

The discrepancies between these inventories can lead to large

differences in simulated surface PM10 concentrations (40–

70 %) and moderate differences in O3 mixing ratios (16–

20 %) in most areas of the North China Plain, as well as

more than 100 % differences in SO2 and NO2 mixing ra-

tios, found in several provinces in China. Our study demon-

strates that WRF-Chem is sensitive to emissions inventories

and improvements in emissions inventories are important for

accurately simulating regional air quality. Further studies are

needed to assess model performance differences due to dif-

ferent emission inputs.

On the basis of lower bias and error values versus observa-

tions we found for our WRF-Chem–REAS simulations, we

chose the REAS inventory to conduct four 1-month simula-

tions for the purpose of model evaluation. The model results

indicate clear regional variations in the seasonal cycle of sur-

face PM10 and O3 over East and South Asia. In northwest-

ern China, maximum PM10 occurs in April, while in Nepal

and other regions of China, the highest PM10 mainly occurs

in January. For surface O3 mixing ratios, the peak values

are simulated in July for northern and eastern China, and

in April for Tibet and Japan. Comparisons between model

simulations and observations show that the model performs

well in simulating surface PM10 and O3, meeting air quality

model performance criteria for both PM10 and O3 at most

sites, although the model underestimates PM10 at some sites

in China in January. The model predicts SO2 better at sites

in Japan than in China, where overestimation is large at the

Beijing site in July and October. The model underestimates

most observed NO2 in all 4 months.

Quantifying uncertainties of simulated air quality at the

provincial level due to emission inputs reveals that the uncer-

tainty in emissions inventories leads to significant differences

in simulated levels of air pollutants, especially PM10, SO2,

and NO2. For O3, on the other hand, different emissions in-

ventories lead to only a moderate variability, showing agree-

ment with the findings of previous studies (Ma and van Aar-

denne, 2004; Amnuaylojaroen et al., 2014). Our study high-

lights the importance of better constraining emissions at the

provincial level for regional air quality modeling over East

Asia, where anthropogenic emissions are high and air pol-

lution is a major environmental and public health challenge.

Model evaluation results also indicate that emissions inven-

tories that do not consider local emissions control policies

could cause large discrepancies. Our results suggest that fu-

ture work should focus on better constraining the provincial-

level emissions especially estimating the primary PM, SO2,

and NOx .

Code availability

The WRF-Chem model is an open-source, publicly avail-

able, and continually improved software. Version 3.5 used

in this study can be downloaded at http://www2.mmm.

ucar.edu/wrf/users/download/get_source.html. Known prob-

lems of the WRF-Chem version 3.5 have been fixed, using

solutions provided online at http://ruc.noaa.gov/wrf/WG11/

known-prob_v3.5.htm. We have optimized dust parameteri-

zations in the code, using observed ground-level PM10 con-

centrations. The modified code can be obtained from the cor-

responding authors.

The Supplement related to this article is available online

at doi:10.5194/gmd-9-1201-2016-supplement.
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