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A B S T R A C T

To evaluate the bottom-up NOX emission inventories with different data sources and spatial scales, an updated
product of tropospheric NO2 vertical column densities (VCDs) from Ozone Monitoring Instrument (OMI),
POMINO, was applied in chemistry transport modeling (CTM) and Gaussian function model for southern
Jiangsu, a typical developed and polluted region in eastern China. Compared to the national emission inventory
(MEIC), better correlation was found between spatial distributions of the high-resolution provincial inventory
(JS) and POMINO VCDs. When applied in CTM, the simulated VCDs using JS were closer to POMINO data than
those using MEIC, indicating the advantage of the provincial inventory that incorporated detailed information of
individual plants. The simulated VCDs, however, were generally larger than observed ones, particularly for
regions with high NO2 levels, partly because the improved NOX control measures for power sector were not fully
considered in both national and provincial inventories. The “top-down” NOX emissions were estimated for four
cities/city combinations in southern Jiangsu, using a Gaussian function model based on POMINO NO2 VCDs. The
results were found to be most consistent with the estimates in JS among bottom-up inventories with different
data sources. To further harmonize emissions and satellite observations at relatively small spatial scale, the on-
line emission measurement data for individual plants are recommended for emission inventory development,
and the products of satellite observation data with finer horizontal resolution are encouraged.

1. Introduction

As precursors of ambient ozone and nitrate aerosols, nitrogen oxides
(NOX) are considered as crucial air pollutants in tropospheric chemistry
(Seinfeld and Pandis, 2006). Coming largely from thermal power and
transportation, NOX indicates the scales of economy and fossil fuel
combustion for areas with intensive anthropogenic activities like
eastern China. With serious air pollution, China has been conducting
series of measures to reduce pollutant emissions, and dramatic changes
in amount and spatiotemporal pattern of emissions are expected across
the country (Zhao et al., 2014; Xia et al., 2016; Liu et al., 2016a; van der
A et al., 2017). Such changes, however, could hardly be tracked
through the bottom-up emission inventories in which information of
individual emission sources were unavailable on a timely and instant
basis through routine statistics (Zhao et al., 2015).

To better understand the emissions of developed regions in China,
city- and provincial-scale inventories were developed integrating the

best knowledge of local emission sources. Advantages of those in-
ventories on air quality simulation were then evaluated through
chemistry transport modeling (CTM), indicated by the discrepancies
between simulated and observed surface concentrations of selected
pollutants (Zheng et al., 2009; Wang et al., 2010; Zhao et al., 2015;
Zhou et al., 2017; Liu et al., 2018). Currently, some limitations existed
when ground observations were used in evaluation of city- and pro-
vincial-scale inventories across China. As ground stations of the na-
tional monitoring network in China are commonly located in urban
areas, observation data reflecting regional levels of air pollutants were
hardly available to public. Therefore, the spatial patterns of emissions
could not easily been tested for primary pollutants like NOX, limited by
the numbers and representativeness of observation stations in a given
area. Moreover, as the observation data at limited stations in urban
areas could not indicate the condition for the whole city, they could
hardly be applied to derive “top-down” estimates of primary pollutant
emissions at city level, limiting the assessment of bottom-up
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inventories. Besides ground measurements, therefore, observation data
from other sources are needed to help better understanding the emis-
sions of typical air pollutants.

Satellites have been used for tropospheric NO2 detection with sa-
tisfying spatial coverage (Richter et al., 2005; Boersma et al., 2007;
Krotkov et al., 2016). At continental and national scales, NO2 vertical
column densities (VCDs) from Ozone Monitoring Instrument (OMI)
were applied to constrain the emissions and to detect the effectiveness
of air quality policy in China (Mijling et al., 2013; van der A et al.,
2017). OMI-derived VCDs were also compared against simulated VCDs
with CTM based on various emission inventories, and the accuracies of
those inventories were then evaluated for different regions across the
country (Han et al., 2015). Besides large spatial scale, satellite-derived
VCDs were used in evaluating the emissions or pollution levels for point
sources (e.g., power plant) and cities (Duncan et al., 2013; de Foy et al.,
2016). In particular, the Gaussian function model was developed in a
top-down methodology to estimate the emissions of isolated point
sources (Lu et al., 2013; de Foy et al., 2015) or cities (Beirle et al., 2011;
Lu et al., 2015; Zhang et al., 2018) based on OMI observations, al-
though uncertainties existed in the methodology (de Foy et al., 2014).
Furthermore, Liu et al. (2016b) modified the approach accounting for
the effect of interfering sources within small distances, and then esti-
mated the lifetime and emissions of NOX of given power plants and
cities located in heterogeneously polluted background in China. Such
method was applied to quantify the inter-annual trends in NOX emis-
sions for selected Chinese cities (Liu et al., 2017). Although the CTM
and Gaussian function have been applied in different countries, com-
prehensive analysis of NOX emissions based on satellite observations is
still lacking at regional scale, and the advantage of local inventories on
air quality research is insufficiently evaluated.

In this work, therefore, we select southern Jiangsu, a region with
developed economy and industry in eastern China (see Fig. 1), and
combine satellite observations, chemistry transport model and Gaussian
dispersion function model to evaluate the bottom-up emission in-
ventories. Jiangsu was the first ranked province in gross domestic
product (GDP) per capita in China (NBS, 2016a), and accounted for
7.5%, 7.7%, 10.2%, and 13.7% of the country's power generation, ce-
ment, pig iron, and crude steel production in 2015, respectively (NBS,
2016b). Intensive industry resulted in heavy air pollution in recent
years, particularly in south of the province, and tightened measures
have been applied to reduce emissions. Based on satellite-derived VCDs,
we first compare spatial patterns of NOX emissions in two inventories at
different scales. CTM was further applied to test the advantage of the
provincial inventory prior to the downscaled national one. With

modified Gaussian function, finally, the lifetimes and emission rates of
NOX for individual cities were calculated, and such top-down results
were used for evaluation of bottom-up emissions from different data
sources. The current study provides a perspective from satellite ob-
servations to examine the NOX emissions at regional and city scales, and
provides a comprehensive understanding in typical air pollutant emis-
sions together with our previous studies that evaluated local inventories
based on ground observations and CTM (Zhao et al., 2015, 2017a; Zhou
et al., 2017).

2. Data and methods

2.1. Emission and satellite data

Two bottom-up emission inventories for 2012 were included in the
analysis. One is the Multi-resolution Emission Inventory for China
(MEIC, http://www.meicmodel.org/), developed by Tsinghua
University. This national inventory provides annual emissions by sector
(power, industry, transportation, residential, and agricultural) for 31
Chinese provinces (two special administrative regions Hong Kong and
Macau not included). The horizontal resolution of MEIC is flexible and
can be determined by the users, with the finest at 0.25° long-
itude× 0.25° latitude available to public. In MEIC, the emissions from
power sector were calculated with a unit-based method, integrating the
best available information of individual plants (Liu et al., 2015). For
other sectors, the emissions were estimated at provincial or county level
and then allocated into grids using different proxies (population and
road net, etc). The other inventory is a provincial inventory for Jiangsu,
developed in our previous work (Zhou et al., 2017; http://www.
airqualitynju.com/En/Data/List/Data%20download). In the in-
ventory, most plants of power and industry sectors were identified as
point sources, and the information on geophysical location, emission
factors and activity data for each plant was investigated and modified
through official environmental statistics, Pollution Source Census (in-
ternal data), and on-site surveys on large emitters. Improved estimation
and spatial distribution of emissions could thus be expected. The hor-
izontal resolution of the inventory reaches 3×3 km. Hereinafter we
mention this high-resolution inventory for Jiangsu as JS inventory. In
our previous work, emission inventories with varied spatial scales for
Jiangsu (MEIC, JS, and another regional inventory by Fu et al. (2013))
were evaluated through CTM, and the best model performance was
achieved for JS inventory, indicated by available ground observations
of NO2 and O3 (Zhao et al., 2017a; Zhou et al., 2017).

For satellite data in China, Lin et al. (2014) modified the calculation

Fig. 1. Location of Jiangsu Province and the three nested domains for CMAQ modeling. JS, ZJ, AH and SH indicate the province of Jiangsu, Zhejiang, Anhui, and the
city of Shanghai, respectively.
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of air mass factor (AMF) considering the effect of aerosols on solar
radiation and that of local topography on surface albedo. An updated
product of NO2 VCDs, POMINO, was then developed based on OMI
observations. Lin et al. (2014) compared POMINO data with the
ground-based observations through multi axis differential optical ab-
sorption spectroscopy (MAX-DOAS) at three observation sites in eastern
China, and found a strong correlation between MAX-DOAS observations
and POMINO (R2= 0.96). Therefore, we applied the daily level-3
product of POMINO with a horizontal resolution at 0.25°× 0.25° for
emission estimation and evaluation. As clouds reduce the accuracy of
satellite measurements, only data with cloud fraction≤0.2 were ap-
plied. Wind fields were taken from the European Center for Medium-
range Weather Forecast (ECMWF) ERA-Interim reanalysis (http://
www.ecmwf.int/en/research/climate-reanalysis/era-interim), and the
averaged information under 500m was used. Although the ideal
threshold for calm wind was under 5 km/h (i.e., 1.4 m/s), the spatial
distribution of VCDs would still be close to symmetric when the wind
speed reached 10 km/h (2.8m/s), implying a moderate influence on
emission estimates (Fioletov et al., 2015; Liu et al., 2016b). Due to
limited satellite data, we defined the calm wind conditions as wind
speed below 2.5m/s, to be a good compromise of sufficient sample size
for calculation of NO2 line densities (see Section 2.3 for details) for both
calm and windy conditions. Shown in Fig. 2 is the NO2 VCD from PO-
MINO under calm conditions during Jan 2010–Aug 2014.

2.2. Air quality modeling

The Models-3/Community Multi-scale Air Quality (CMAQ) version
4.7.1 was applied to evaluate the emission inventories for Jiangsu. As
shown in Fig. 1, the three one-way nested domain modeling was con-
ducted, and the spatial resolutions were set at 27, 9 and 3 km respec-
tively in Lambert Conformal Conic projection, centered at (110°E, 34°N)
with the two true latitudes 25°N and 40°N. The mother domain (D1,
180×130 cells) covered most part of China, Japan and the whole
Korea and part of other countries. Jiangsu, Zhejiang, Shanghai, Anhui
and parts of other provinces were at the second modeling region (D2,
118×97 cells). The third (D3, 124×70 cells) covered the mega city
Shanghai and six most developed cities in southern Jiangsu including
Nanjing, Changzhou, Zhenjiang, Wuxi, Suzhou and Nantong. Anthro-
pogenic emissions used for domains D1 and D2 were obtained from
MEIC with an original spatial resolution of 0.25°× 0.25°. The spatial

distribution of Chinese population for 2012 at a horizontal resolution at
1×1 km was applied to relocate MEIC emissions to each modeling
domain. For Jiangsu domain in D3, the downscaled MEIC according to
the population density and JS inventory were used to test the modeling
performance. The meteorological fields were provided by the Weather
Research and Forecasting Model (WRF) version 3.4, and the outputs
were transferred by meteorology chemistry interface professor (MCIP)
version 4.2 into the chemistry transport module in CMAQ (CCTM).
Other details of model settings were explained in our previous work
including chemistry mechanisms, emissions of natural origin, and
evaluation of meteorology field simulation (Zhou et al., 2017). Among
typical months in different seasons, relatively sufficient NO2 VCDs from
POMINO and satisfying meteorology simulation were found for April
and October 2012 in Jiangsu (Zhou et al., 2017; Zhao et al., 2017a).
The two months were thus selected as CTM period, to eliminate the
uncertainty from satellite observation and meteorology simulation in
evaluation of emission inventories through CTM. The first five days of
each month were chosen as the spin-up period to provide initial con-
ditions for later simulations.

The NO2 VCD from CMAQ was obtained by integrating the simu-
lated NO2 concentrations from ground layer to the 23rd vertical layer
(0.094 atm) in the CTM, as expressed in Eqs (1) and (2):
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where nNO2 is the NO2 VCD from CMAQ model (molec./cm2); mk is the
simulated NO2 concentrations at vertical layer k in the CMAQ (molec./
cm3); ΔH is the height of layer k (m); H represents the height when the
pressure of atmosphere declines to 1/e of the original value; and p is the
air pressure.

2.3. Top-down estimation of city-level NOX emissions

As shown in Fig. 2, the NO2 hotspots included Nanjing, Zhen-
jiang + Yangzhou, Changzhou + Wuxi, and Suzhou in southern
Jiangsu. As the spatial distribution of NOX emissions was not strongly
associated with administrative division but locations of emission
sources, we combined cities that shares common hotspots of NO2 VCDs
as one region. We followed the method by Liu et al. (2016b) and ap-
plied a modified Gaussian function model to derive the top-down es-
timates for city-level NOX emissions. As the cities were located in a
heterogeneously polluted background, the distribution of NO2 VCDs
under calm wind conditions was assumed as an indicator for the dis-
tribution of emissions, instead of considering the city as a single point
source. Lifetime could then be obtained according to the difference
between the NO2 patterns under wind and calm conditions. In the
model, one-dimensional NO2 line densities (NO2 per cm) can be cal-
culated as function of distance for each wind direction sector separately
by integrating the mean NO2 VCDs (NO2 per cm2) perpendicular to the
wind direction (Beirle et al., 2011). A model function N(x) was used to
fit the observed line densities of NO2:
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where E and B are included respectively as the scaling factor and offset
accounting for possible systematic differences between windy and calm
wind conditions, X is the location of the source (relative to the a priori
coordinates of the site under investigation), x0 is the e-folding distance
downwind, and C(x) is the NO2 patterns observed under calm condi-
tions. In the model, x0 can be estimated based on the difference be-
tween NO2 patterns under windy and calm conditions. In this work, the

Fig. 2. NO2 VCDs from POMINO in Jiangsu under calm wind condition (judged
within the area 30–33°N, 118–122°E) from 2010 to 2014. The circles indicate
the centers of concerned cities/city combinations: Nanjing (32.125°N,
118.875°E), Zhenjiang + Yangzhou (32.125°N, 119.375°E),
Changzhou + Wuxi (31.875°N, 120.125°E), and Suzhou (31.625°N,
120.875°E).
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dominating wind directions for southern Jiangsu, i.e., southerly,
northerly, southeasterly and northwesterly wind sectors were con-
sidered in determination of line densities, and only those with sufficient
data from satellite observations were included. The criterion was that
the missing data were less than 10% in the across-wind integration
interval and less than 20% in the fit interval along wind direction. We
set the fit interval in wind direction to 600 km and the across-wind
integration interval to 125 km. The mean lifetime of NO2 can be cal-
culated by dividing x0 by w, the mean wind speed. As an example, Fig. 3
illustrates the observed line densities for calm (blue) and wind (red)
around Nanjing and the fitted model function N(x) (grey) for southerly
(Fig. 3a) and northerly wind conditions (Fig. 3b). Results for other wind
sectors could not be obtained attributed to missing data.

The emission rate of NOX was calculated by dividing the total mass
of NOX by lifetime. Following Liu et al. (2016b), we estimated the total

mass of NO2 based on line densities under calm wind conditions, g(x):
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where A is the total mass of NO2 in the area of interest; i represents
wind direction sectors northeast–southwest and south–north (opposite
wind direction sectors were combined); σi is the standard deviation of
gi(x), and ai + bix represents the background field. In this work, line
densities were integrated from the NO2 VCDs in across-wind direction
with an interval of 40 km. As the typical concentration ratio of NO to
NO2 was 0.32 at noon in urban (Seinfeld and Pandis, 2006), the fitted A
from Eq. (5) was scaled by a factor of 1.32 to obtain the mass of NOX

following Beirle et al. (2011) and Liu et al. (2016b).

Fig. 3. NO2 line densities around Nanjing for calm (blue) and southerly (a) and northerly (b) wind direction sectors (red) as a function of the distance x to Nanjing
center. Positive and negative directions of x axis indicated directions along and opposite the wind direction, respectively. Grey lines indicate the fit result N(x) (see
Eq. (3)). w and τ represent the net mean wind speed (windy – calm) from ECMWF and the life time of NO2, respectively. (For interpretation of the references to colour
in this figure legend, the reader is referred to the Web version of this article.)
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3. Results and discussions

3.1. Spatial patterns of NOX emissions and satellite-based NO2 VCDs

The Jiangsu's NOX emissions in 2012 were calculated at 1615 Gg in
JS inventory, and power, industry, residential and transportation sector
contributed 42%, 32%, 2% and 24% to the total emissions, respectively
(Zhou et al., 2017). The emissions in MEIC was 22% larger than those in
JS, and the analogue numbers for sector contributions were 37%, 39%,
2%, and 22%, respectively. The spatial distributions of emissions in
MEIC and JS inventories were compared to that of monthly means of
POMINO NO2 VCDs in summer (May–September) 2012 over Jiangsu.
To ease the comparison and correlation analysis, the gridded emissions
were reallocated to the 0.25°× 0.25° grid system consistent with PO-
MINO, i.e., emissions were aggregated into the 0.25°× 0.25° grid ac-
counting for the areas of the 3× 3 km grids that overlap the
0.25°× 0.25° grid receiving the aggregation. Compared to cold seasons,
the lifetime of NO2 in atmosphere is shorter in summer attributed to the
enhanced photochemical reaction under high temperature, and accu-
mulation of primary emissions is more difficult under strong air con-
vection. In this case, the retrieved VCDs could serve as an appropriate
indicator for emissions. Moreover, the summer prevailing wind in
Jiangsu was from southeast where Shanghai and Zhejiang are located
(see Fig. 1 for the locations). Given the relatively lower emissions in
latter two regions (Xia et al., 2016), the local sources were expected to
play an important role in pollution formation for Jiangsu, and evalua-
tion of primary emissions with satellite observations could be further

justified (Mijling et al., 2013).
Fig. 4a and c illustrates the spatial distribution of JS and MEIC NOX

emissions in 2012, respectively. Both JS and MEIC inventories captured
the hotspots of NOX emissions in southern Jiangsu (particularly along
the Yangtze River) where economic activities and industrial plants were
intensively distributed. The total correlation coefficients between VCDs
and emissions were calculated at 0.69 and 0.68 for JS and MEIC in-
ventories. As JS inventory included detailed information of industrial
plants, improvement in emission estimation was ideally expected
compared to MEIC. Such improvement, however, could not be sug-
gested by the very close correlation coefficients. At relatively coarse
horizontal resolution, the difference between the national (MEIC) and
provincial inventories (JS) were hard to detect, and the accuracy and
applicability of the national inventory could be partly confirmed
through the comparison.

To further analyze the spatial distribution of emissions, correlation
coefficients between VCDs and emissions were separately calculated for
grids in different VCD intervals, i.e., > 10×1015mol./cm2 (around top
10%), 5–10× 1015mol./cm2 (around 10–55%), and ≤5×1015mol./
cm2 (around last 55%), and the results were shown in Fig. 4b and d for
JS and MEIC, respectively. For all the intervals, larger correlation
coefficients for JS were found than those for MEIC, indicating that the
spatial distribution of emissions in the high-resolution provincial in-
ventory was more consistent with satellite-derived VCDs than that in
the national inventory. Compared to JS inventory, larger slopes be-
tween emissions and VCDs were found for MEIC in high VCD intervals,
but smaller in low intervals. The contrast implies that MEIC tended to

Fig. 4. Spatial distributions of NOX emissions in JS (a) and MEIC inventories (c) at a horizontal resolution of 0.25°× 0.25° and their correlations with POMINO by
NO2 VCD interval (b and d). Dotted lines in panels b and d indicate the fitted linear regression lines.
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calculate larger emissions for high-polluted regions. It might be because
the benefits on NOX emission abatement from certain air pollutant
control devices installed on big plants (e.g., selective catalytic reduction
(SCR) on power sector) were not fully considered in MEIC. More dis-
cussions will follow in Section 3.2. The poorest correlation was found in
the lowest VCD interval (≤5×1015 mol./cm2) for both JS and MEIC
inventories, indicating that improvement on emission estimation for
small sources (e.g., small industrial plants and residential combustion)
was still in great needed. Compared to big industrial plants that were
relatively well documented, it is different to carefully track important
changes on small sources all the time, e.g., closure or retrofitting. At-
tributed mainly to missing or incorrect information, therefore, accurate
and timely emission estimation for small sources were of great chal-
lenges.

3.2. Evaluation of NOX emissions through CTM and satellite observations

Fig. 5a and c shows the monthly mean of tropospheric NO2 VCDs for
October 2012 from CMAQ simulation based on MEIC and JS in-
ventories, respectively. Downscaled from 0.25°× 0.25° to 3× 3 km,

the MEIC inventory in D3 could hardly identify the big power and in-
dustrial plants with relatively large emissions. As a result, the simulated
hotspots of NO2 VCDs were widely distributed in the modeling domain
and commonly consistent with the locations of big cities along the
Yangtze River (Fig. 5a). In contrast, notably outstanding VCDs were
simulated based on JS inventory, indicating the effects of large point
sources (Fig. 5c). Fig. 5b and d illustrates the spatial distributions of the
ratios of simulated to POMINO NO2 VCDs for MEIC and JS inventories,
respectively. NO2 VCDs from POMINO were evenly downscaled from
0.25°× 0.25° to 3×3 km, to be consistent with CMAQ simulation.
Larger VCDs from CMAQ simulation than those from satellite ob-
servations were generally found in high-polluted areas, consistent with
the locations of big power plants with SCR installed (indicated by the
circles in Fig. 5d). Overestimation in NOX emissions of power sector
were thus implied for Jiangsu province in current available inventories.
As illustrated in Fig. 6, similar results were also found for April, that
NO2 VCDs simulated with JS inventory were commonly smaller than
those simulated with MEIC, and that the simulated VCDs with JS were
closer to POMINO than those with MEIC.

Linear regression analysis was conducted between NO2 VCDs from

Fig. 5. Simulated NO2 VCDs from CMAQ using MEIC (a), JS (c), and JS_revised inventories (e), and ratios of simulated to observed VCDs from POMINO (b, d, and e)
for October 2012. The horizontal spatial resolution is 3× 3 km. Hollow circles in panel d indicate the locations of power plants with SCR installed.
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CMAQ simulation and POMINO for October 2012, respectively, based
on the data at horizontal resolution of 0.25°× 0.25°. As summarized in
Table 1, there was no big difference in correlation coefficients (R) for
simulated VCDs with MEIC and JS inventories, compared to satellite
observations. The slopes of simulated and satellite-derived VCDs

through linear regression (the k values in Table 1) were larger than 1,
implying again the emissions might be overestimated in both JS and
MEIC inventories, particularly for the latter one. In addition, two sta-
tistical indicators, root mean squared error (RMSE) and normalized
mean error (NME), were calculated respectively with Eqs (6) and (7),
and applied to evaluate the model performance:

∑= −
=

RMSE
n

P O1 ( )
i

n
i i1

2
(6)

=
∑ −

∑
×=

=
NME

P O
O

100%i
n

i i

i
n

i

1

1 (7)

where P and O indicate the results from modeling prediction and ob-
servation, respectively; n is the number of data points. The smaller
discrepancies between observed and simulated VCDs using JS inventory
partly demonstrated the advantage of the high-resolution inventory
that collected detailed information of individual sources on NO2 si-
mulation at provincial scale. Besides this evaluation with satellite ob-
servations, our previous study revealed that smaller discrepancies

Fig. 6. The same as Fig. 5, but for April 2012.

Table 1
Model performance statistics for NO2 VCDs from POMINO and CMAQ simula-
tion using MEIC, JS, and JS_revised inventories in D3 (southern Jiangsu) for
October 2012.

MEIC JS JS_revised

R 0.42 0.44 0.58
k 2.12 1.41 1.10
RMSE (1015 molec./cm2) 26.8 16.9 12.0
NME (%) 10.0 4.2 3.7

Note: The k and R are respectively the slope and correlation coefficient between
the simulated and observed NO2 VCDs through linear regression. RMSE and
NME were calculated using Eqs (6) and (7), respectively.
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between simulated and observed surface NO2 concentrations could also
be achieved when MEIC was replaced with JS inventory in CMAQ
modeling (Zhou et al., 2017). Therefore, the improvement of emission
inventory for southern Jiangsu proved convincing together with CTM,
ground and satellite observations.

As indicated above, the NOX emissions in Jiangsu might be over-
estimated in current inventories, particularly for power sector. In 2012,
SCR technologies were installed in some power plants in the province,
but the actual operation conditions and benefits of NOX control were
rarely analyzed through real-time measurement due to irregular and
thereby unreliable data (Liu et al., 2016b). Although the information of
emission sources was collected at plant level in JS inventory, the NOX

removal rates for individual plants were commonly determined by ex-
pert judgment (e.g., data from limited investigations reported by the
factory officials to local environmental protection bureaus), and the
average NOX removal efficiency for power sector was calculated at 37%
for Jiangsu 2012 (Zhou et al., 2017). Based on available continuous on-
line measurement data, however, the NOX removal rate for certain
power plants could reach 85% in the province (internal report by
Jiangsu Environmental Monitoring Center), much higher than that used
in JS inventory. In this work, therefore, an additional emission case,
JS_revised, was developed, in which the NOX removal rates for power
plants with SCR installed were uniformly set at 85%. Such revision led
to 35% reduction in NOX emissions from power sector, and 13% re-
duction in the total emissions in Jiangsu. The spatial distribution of
simulated NO2 VCDs based on JS_revised and the ratio to POMINO data
were illustrated in Fig. 5e and f, respectively. Reduced NO2 VCDs were
obtained compared to those using JS inventory, particularly for regions
with power plants. Indicated by the slope closer to 1.0 and smaller NME
(Table 1), JS_revised inventory was proved to be better in NO2 VCD
simulation. The result implies that more careful analysis on continuous
emission monitoring system (CEMS) data could be a further step for
emission optimization and air quality modeling at regional spatial scale.

Limitation should be acknowledged in the analysis. Sensitivity of
satellite measurement decreases towards the surface, leading to un-
certainty in retrieval of NO2 VCDs and thereby in comparisons with
CTM results (Eskes and Boersma, 2003; Lin et al., 2014; Lorente et al.,
2017). As we applied the level-3 product of POMINO for comparison,
however, averaging kernels of the product could not be directly ob-
tained and applied in Eq. (1). Through comparison between OMI and
simulated NO2 with a global chemistry transport model, GEOS-Chem,
Boersma et al. (2016) found the error of vertical sampling in satellite
retrieval reached 20% and application of the averaging kernel resulted
in smaller uncertainty intervals for the ratios of observed to simulated
NO2. For China, the differences were estimated moderate: the ratios of
OMI to GEOS-Chem NO2 (geometric mean) were 0.99 and 1.0 without
and with averaging kernel for winter, and 1.07 and 1.13 for summer,
respectively (Boersma et al., 2016). In this work, the discrepancies
between simulated NO2 using JS and MEIC inventories were larger,
indicated by the slopes in Table 1. The comparison, therefore, suggested
the improvement of JS inventory in simulation of NO2 VCDs, even the
uncertainty existed without application of averaging kernel. When

available, application of averaging kernel for each simulated pixel is
recommended for further improvement of the analysis.

3.3. Life time and top-down emissions of NOX

Table 2 summarizes the wind speed and lifetime of NO2 by wind
direction sector for the four cities/city combinations. The average
lifetimes were estimated at 1.90, 1.87, 1.86, and 2.50 h for Nanjing,
Changzhou + Wuxi, Suzhou, and Zhenjiang + Yangzhou, respectively,
and they were within the ranges between 1.8 and 7.5 h for NO2 from
China's power plants and cities estimated by Liu et al. (2016b). Among
all the wind sectors, NO2 lifetime under southerly was the shortest,
varying from 1.18 to 2.13 for different cities. Shown in Fig. 7 are NO2

line densities in the four cities/city combinations for the dominating
wind sectors, i.e., southeast–northwest and south–north directions,
based on the POMINO data in summer (May–Sep) of 2010–2014.
Combining the lifetime and the constrained total mass of NO2 with Eq.
(5), the emission rates were calculated at 117.1, 221.3, 180.3, and
113.0 mol/s for Nanjing, Changzhou + Wuxi, Suzhou, and Zhen-
jiang + Yangzhou, respectively.

The “top-down” estimates were compared with other available
bottom-up emission data, including MEIC, JS, JS_revised, and those
reported in Environmental Statistics Yearbook (mentioned as ESY
hereinafter; NBS and MEP, 2013), as summarized in Table 3. In parti-
cular, ESY collected detailed operation data of industrial plants and on-
road vehicles, and applied them to calculate annual emissions of air
pollutants including NOX. City-level emissions were then aggregated
and reported as official numbers. The statistic indicators including
correlation coefficient (R), NME, and RMSE between city-level top-
down and bottom-up estimates were calculated as provided in Table 3.
As can be seen, most bottom-up emissions were within the ranges
of± 50% around the top-down estimates, thus the comparison mu-
tually demonstrated the reliability of the two methods in NOX emission
calculation in southern Jiangsu. NMEs were ranged 18%–49% for dif-
ferent bottom-up inventories, and the results were close to that of our
recent study on the uncertainty of city-level emission inventory in
China (Zhao et al., 2017b). In that work, the 95% confidence interval
for emissions of industrial sector in Nanjing was quantified at
−10%–33% using a modified Monte-Carlo simulation framework.
Among all the bottom-up estimates, JS inventory was the most con-
sistent with the top-down estimates, indicated by the highest R and
smallest NME and RMSE in Table 3. The comparison thus suggested the
importance of detailed information of local sources on city-level emis-
sion estimation. The city emissions extracted from MEIC were generally
larger than the top-down estimates from POMINO. Neglecting the im-
proved use of NOX control technologies for certain sources like power
plants might be the primary reason, as mentioned earlier in Sections 3.1
and 3.2. In contrast, the ESY emissions were commonly smaller than the
top-down estimates. ESY included only emissions from power, industry,
and on-road transportation sector, but ignored those from off-road and
residential combustion sources. Hence underestimation in total city
emissions could be expected by ESY.

Table 2
Wind speed (m/s) and calculated lifetime of NO2 (h) by wind direction sector for the four cities/city combinations in southern Jiangsu. Numbers in the parentheses
indicate 95% confidence intervals of lifetime.

Nanjing Changzhou + Wuxi Suzhou Zhenjiang + Yangzhou

South Wind speed 5.08 4.95 5.47 5.03
Lifetime 1.56 (1.29–2.02) 1.65 (1.48–2.21) 1.59 (1.94–2.36) 2.13 (1.87–2.50)

Southwest Wind speed 5.24 5.38 5.37 5.27
Lifetime 1.97 (1.74–2.33) 1.99 (1.82–2.21) 2.12 (1.94–2.36) 2.55 (2.18–3.18)

Northeast Wind speed 4.8 5.47 6.07 5.73
Lifetime 2.16 (1.94–2.47) 1.96 (1.77–2.22) 1.88 (1.79–1.98) 2.84 (2.49–3.40)
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Fig. 7. NO2 line densities in four cites/city combinations for south-north and northeast-southwest wind directions. Blue cross: NO2 line densities for calm winds as a
function of the distance to city center x; Grey line: the fit g(x) (see Eq. (5)); Pink line: the fitted background ai + bix (see Eq. (5)). A, a and b in Eq. (5) in Eq. (5) are
provided as well in each panel. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Although it was demonstrated to be more applicable in NO2 simu-
lation through CTM, city emissions of JS_revised inventory was less
consistent with top-down estimates, compared to those of JS inventory.
Uncertainties of both bottom-up and top-down analysis should be
noted. For the bottom-up JS_revised inventory, a uniform removal rate
of 85% was assumed for all power plants installed with SCR technolo-
gies. Such simplified assumption might exaggerate the benefits of NOX

control for power sector, as the removal efficiencies of certain plants
could not reach the assumed value. Regarding the top-down estimation,
the concerned cities/city combinations were located in polluted eastern
China instead of in relatively clean background regions, and the effects
of interfering emission sources within small distances could not fully be
eliminated using the modified method. There were possible errors in
wind field simulation and satellite observations, resulting in un-
certainty in emission rate estimation. For example, the deviation of
wind speed and direction between ECMWF fields and sonde measure-
ments was evaluated to result in an uncertainty of 30% for non-
mountainous sites (Liu et al., 2016b). Relevant parameters for NO2

retrieval process were obtained from CTM in POMINO, and the retrieval
uncertainties associated with aerosols were estimated at 15% for both
single scattering albedo and vertical distribution simulation, and that
associated with vertical shape of NO2 were 10–20% (Lin et al., 2014).
According to a recent study, the NME of two top-down estimates of NOX

emissions with varied data and methods in Gaussian function model
was calculated at 39.7% for selected six cites (Zhang et al., 2018).
Moreover, as OMI instrument detected air pollutants with a local
equator crossing time at 13:45, the retrieved NO2 VCDs were not ac-
tually representative for diurnal mean. Discrepancy would then be ex-
pected when top-down estimation based on instant satellite observa-
tions was compared with the bottom-up inventory that stands for an
average emission rate of full days. Further efforts are recommended
from both bottom-up and top-down methods to reduce the discrepancy
between the estimations and to thereby improve the understanding of
city-level emissions in China.

4. Conclusions

Satellite-derived NO2 VCDs from OMI were applied to evaluate
different NOX emission inventories in southern Jiangsu, combined with
chemistry transport model and Gaussian function model. Through
comparison between gridded NO2 VCDs and NOX emissions, and that
between observed and simulated VCDs, advantage on air quality re-
search was revealed for high-resolution emission inventory that in-
corporated the best available information of local sources. The national
emission inventory MEIC was expected to overestimate NOX emissions
for Jiangsu 2012, partly because improvement in NOX control for power
sector was not fully considered in MEIC without data support from

CEMS. Out of available bottom-up emission inventories, the best
agreement was achieved between the high-resolution inventory at local
scale and the top-down estimation from Gaussian function model based
on satellite observation. To further reduce the uncertainty of the ana-
lysis, more detailed information on individual plants were re-
commended for emission inventory development. For example, avail-
able CEMS data indicated that emission factors of power plants in China
might largely decline in recent years (internal communication with an
officer of Ministry of Environmental Protection, Xin Bo). Further im-
provement in emission inventory could thus be expected when CEMS
data are properly applied. For better analysis at provincial/city scale,
products of NO2 VCDs with finer horizontal resolution were also en-
couraged based on satellite observations.
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