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A B S T R A C T   

Volatile organic compounds (VOCs) poses a serious health risk through not only their own toxicity but also their 
role as precursors of ozone and secondary organic aerosols. The chemical industry, as one of the pillar industries 
in eastern China, is a key source of VOCs emissions. In this study, speciated VOCs emissions were measured in 
two chemical plants in eastern China. Oxygenated VOCs and aromatics were found to be the dominant species 
categories in both plants. The ozone formation potential (OFP) and secondary organic aerosol formation po-
tential (SOAFP) of VOCs from dedicated resin production were both higher than general resin production. Three 
process-based models were used for the estimation of VOCs emissions from the two tested plants as a case study. 
The comparison between the emission factor model and the model with best available estimation methods (e.g., 
the measurement-based method, the mass balance method, the empirical formula method, and the correlation 
equation method) implied possible overestimation of the widely used emission factor model for the chemical 
industry. The probabilistic model developed in this study incorporated probability distribution of key parameters 
and proved to be a promising tool for emission inventory development and uncertainty analysis. The overall 
uncertainties of VOCs emissions based on the model were (− 48%, +147%) and (− 48%, +139%) for the two 
tested plants. In this study, the speciation profiles and estimation methodology for VOCs emissions from the 
chemical industry in China were both improved, which could benefit the accurate evaluation of the impacts of 
VOCs emissions.   

1. Introduction 

Volatile organic compounds (VOCs) play an important role in the 
formation of both tropospheric ozone (O3) and secondary organic 
aerosols (SOA), and have an adverse impact on human health (Geng 
et al., 2007; Li et al., 2011; Wang et al., 2017). In recent years, VOCs 
have been of great concern in China with total anthropogenic emissions 
reaching 25–30 Tg (Li et al., 2019a; Sun et al., 2018; Wu and Xie, 2017). 
Petroleum-related industries are one of the main VOCs emission sources 
in China, responsible for 16%–27% of the total emissions (Li et al., 
2019a; Sun et al., 2018; Wu and Xie, 2017). The Yangtze River Delta 

(YRD) region in eastern China is a hotspot region for VOCs emissions, 
due to its relatively developed economy and high levels of industriali-
zation (Fu et al., 2013; Simayi et al., 2019; Wei et al., 2008; Wu et al., 
2016). Petroleum-related industries were estimated to account for 25%– 
36% of the total anthropogenic VOCs emissions in the YRD region (An 
et al., 2021; Huang et al., 2011; Simayi et al., 2019; Wu et al., 2016). 

Efforts have been made to obtain accurate anthropogenic VOCs 
emission inventories. Studies on the national emission inventories (Li 
et al., 2019a; Simayi et al., 2019; Wu et al., 2016; Wu and Xie, 2017) 
have refined the VOCs emission source categorization and taken into 
consideration the VOCs removal efficiencies of air pollution control 
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devices (APCDs). Regional inventories have gained access to activity 
level data at the city- (Liu et al., 2018; Wang et al., 2018), county- 
(Simayi et al., 2019), and even enterprise-level (Zhao et al., 2017a; 
Zheng et al., 2019; Zhong et al., 2018), and used refined emission factors 
with APCDs considered. However, VOCs emission inventories still have 
much higher uncertainties than criteria air pollutants. The overall un-
certainty range of the national VOCs emission inventories for China with 
a 95% confidence level was estimated to be (− 51%, +133%) by Wei 
et al. (2011) and (− 40%, +107%) by Wu et al. (2016). The uncertainties 
of the emission inventories for the industrial sector, with 
petroleum-related industries dominating, were estimated to be around 
(− 60%, +150%) on a regional scale (Fu et al., 2013; Huang et al., 2011; 
Zhao et al., 2017a) and as large as (− 88%, +283%) on a national scale 
(Wei, 2009). The uncertainties of the emission inventories for 
petroleum-related industries originate mainly from the complexity of 
manufacturing and ancillary processes (Zhao et al., 2017a). 

To reduce the uncertainties in the VOCs emission estimation for 
petroleum-related industries, a process-based method adapted from the 
Emissions Estimation Protocol for Petroleum Refineries released by the 
United States Environmental Protection Agency (US EPA, 2015) was 
recommended by the Ministry of Environmental Protection (MEP) of 
China for the petrochemical industry in China (MEP, 2015), and applied 
in limited studies (Liu et al., 2020; Yen and Horng, 2009). The emission 
processes in petroleum-related chemical industries include the 
manufacturing lines, storage tanks, equipment leaks, loading opera-
tions, the wastewater collection and treatment system, the circulating 
water system, flares, stationary combustion sources, sampling opera-
tion, abnormal operational conditions (including startup, shutdown and 
maintenance), and malfunctions (US EPA, 2015). 

Among all emission processes, equipment leaks, storage tanks, and 
manufacturing lines are usually considered to be the main contributors 
to the VOCs emissions in petrochemical industries and responsible for 
over 90% of the total (Ke et al., 2020; Liu et al., 2020; Yen and Horng, 
2009). Leaks of equipment components are a major fugitive emission 
process throughout the entire manufacturing area. More than 90% of the 
total equipment leak emissions come from 0.1% to 0.4% of highly leaky 
components (Epperson et al., 2007; Ke et al., 2020), and consequently 
the probability distribution of the leak emission rate greatly affects the 
overall VOCs emissions from equipment leaks. Moreover, the applica-
tion of the leak detection and repair (LDAR) program has changed the 
leak emission rate distribution, resulting in high uncertainties in emis-
sion estimation (Ke et al., 2020). For the emission process of storage 
tanks, breathing losses and operational losses are the two sources of 
VOCs emissions (Chen and Carter, 2020). The differences in tank types, 
physiochemical properties of storage materials, storage temperature, 
liquid storage height, turnover, etc. could lead to large variation in VOCs 
emissions (Chen and Carter, 2020; Jovanovic et al., 2010; Liu et al., 
2015; Lu et al., 2013; Lu, 2017). Manufacturing line VOCs emission 
sources include the stack emission process and the fugitive emission 
process. The manufacturing stack emissions can be calculated based on 
the measured VOCs concentration and the flue gas flowrate at the stack, 
while the manufacturing fugitive emissions is difficult to estimate due to 
the lack of detailed manufacturing information (Lu et al., 2020). 

The process-based methodology has revealed better performance in 
VOCs emission estimation for the petroleum-related industries than the 
commonly used emission factor approach. However, large uncertainties 
still exist in the estimation for key processes in these industries. In this 
study, speciated VOCs concentrations in flue gas were measured and 
detailed information was collected in two chemical plants in China. 
Ozone formation potential (OFP) and secondary organic aerosol for-
mation potential (SOAFP) were calculated based on the derived VOCs 
speciation profiles. A probabilistic process-based method was developed 
to estimate VOCs emissions from the petroleum-related industries. More 
accurate emission estimation and more reasonable uncertainty evalua-
tion were benefited from this method, which could contribute to the 
improvement of the accuracy of VOCs emission inventories. 

2. Methodology 

2.1. Description of tested chemical plants 

The synthetic chemical industry and the fine chemical industry are 
two dominant petroleum-related industries for VOCs emissions in the 
YRD region in eastern China, accounting for 22%–44% and 18%–29% of 
the total, respectively (Liang et al., 2020; Simayi et al., 2019; Wu et al., 
2016; Zheng et al., 2017). Synthetic resin production and paint pro-
duction are two important subsectors in these two chemical industries, 
respectively, with multiple product types and diverse manufacturing 
techniques. The total outputs of synthetic resin production and paint 
production in China in 2017 were 83.78 and 20.41 Mt, respectively 
(CPCIF, 2018). Synthetic resins can be divided into general resins and 
dedicated resins, accounting for 68% and 32% of the total outputs in 
2017, respectively. The outputs of dedicated resins had an even higher 
proportion than those of general resins in eastern China (CPCIF, 2018). 
There is limited information on VOCs emissions from the production of 
dedicated resins. Therefore, one moderate-scale dedicated resin pro-
duction plant (Plant 1) and one small-scale paint production plant (Plant 
2) were selected for emission measurements in this study. In 2018, 36.6 
kt of furan resin, 6.3 kt of phenolic resin, and 15.8 kt of sulfonic acid 
curing agent were produced in Plant 1, and about 8 kt of metal pack-
aging coatings was produced in Plant 2. 

In Plant 1, the stacks for the phenolic resin production workshop, the 
furan resin production workshop, the curing agent production work-
shop, the storage tank area, and the wastewater treatment area were 
selected for flue gas sampling, and the furan resin production workshop 
was selected for fugitive emission sampling during the loading operation 
of raw materials. It should be noted that there were fugitive gas 
collection systems for both storage tanks and wastewater treatment, 
which converted most of the fugitive emissions to stack emissions. The 
main workshop in Plant 2 was selected for both stack and fugitive 
emissions sampling. Activated carbon adsorption (ACA) based APCD 
combinations were adopted by both plants. To assess the impacts of 
APCD combinations on VOCs emissions, stack emissions were tested at 
both inlets and outlets of APCDs. The VOCs emission processes and their 
corresponding APCDs in the two tested plants are listed in Table S1 in 
the Supplementary Information (SI). 

2.2. Sampling and analytical methods 

VOCs emissions were measured using two methods. The non- 
methane hydrocarbons (NMHC) concentration was monitored using a 
portable flame ionization detector (FID) (PF-300, Pollution, Italy). For 
speciated VOCs measurements, flue gas or fugitive gas samples were 
collected by Summa canisters with passivation treatment on the inner 
wall, and analyzed using a gas chromatography-mass spectrometry/ 
flame ionization detector (GC-MS/FID) system (Trace1300-ISQD300, 
Thermo Fisher, USA). The C2–C4 species were separated with a TG- 
BOND alumina column and quantified using FID. The C4–C12 species 
were separated with a TG-624 column and quantified using MS. To 
ensure the representativeness of samples, the sampling time was set to 
be 20 min, and three parallel samples were collected at each sampling 
sites for quality assurance and quality control (QA/QC). The speciated 
VOCs measurements were calibrated by a Photochemical Assessment 
Monitoring Stations (PAMS) standard mixture and a TO-15 standard 
mixture, and a total of 108 VOC species (Table S2 in the SI), including 
alkanes, alkenes, alkynes, aromatics, halohydrocarbons, oxygenated 
VOCs (OVOCs), and others, were measured. Details of the sampling and 
analytical methods can be found in Section S1 of the SI. 

2.3. Estimation methods for VOCs emissions from key processes 

The best available estimation methods for the four key processes in 
the tested plants are introduced below. Details on the calculation 
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methods for all processes can be found in Table S3 and Section S2 in the 
SI. 

2.3.1. Manufacturing lines 
Manufacturing line stack emissions can be calculated based on total 

VOC (TVOC) concentrations in the exhausted flue gases. The 
manufacturing line fugitive emissions are difficult to estimate. The best 
available estimation method is based on the TVOC concentrations before 
APCDs and the capture efficiencies of the fugitive flue gas collection 
systems. Therefore, the best available estimation method for 
manufacturing line emissions used in this study for both Plant 1 and 
Plant 2 is shown as Eq. (1). 

Em =Ems + Emf = CoutQoutt + CinQint
(

1 − ηc
ηc

)

(1)  

where Em is the total VOCs emission from a manufacturing line; Ems and 
Emf are the stack and fugitive emissions from the manufacturing line, 
respectively; Cin and Cout are the flue gas TVOC concentrations at the 
inlet and outlet of the APCD combination for the manufacturing line, 
respectively; Qin and Qout are the flow rates at the inlet and outlet of the 
APCD combination, respectively; ηc is the capture efficiency for fugitive 
VOCs emissions, which was estimated to be 90% in this study; and t is 
the operation time of the manufacturing line. 

When applying the method described above to the two tested plants 
in this study, the TVOC concentrations used in Eq. (1) were not equal to 
the total concentrations of the 108 VOCs species measured by the GC- 
MS/FID system. This was because some of the characteristic VOCs spe-
cies (formaldehyde, phenol and furfuryl alcohol for Plant 1, and butanol 
and butyl acetate for Plant 2) were unmeasurable by the analytical 
system. The concentrations of the missing species were estimated based 
on results from the mass balance method provided by the tested plants. 
Detailed information on the method can be found in Section S2.1 in the 
SI. 

2.3.2. Storage tanks 
The TANKS model is most widely used in the calculation of VOCs 

emissions from storage tanks (Chen and Carter, 2020; Howari, 2015; 
Jovanovic et al., 2010; Saikomol et al., 2019). However, some key pa-
rameters for the model were unavailable from the two tested plants. In 
this study, the VOCs emissions from storage tanks in Plant 1 were 
calculated based on the empirical formula method used in AP-42 (US 
EPA, 2006; 2015). The fugitive emissions from storage tanks were 
collected and converted to stack emissions mostly, with APCDs applied. 
Therefore, the best available estimation method for storage tanks in this 
study is shown as Eq. (2). 

Et =Ets +Etf =CoutQoutt + Et0(1 − ηc) (2)  

where Et is the total VOCs emission from storage tanks; Ets and Etf are the 
stack and fugitive emissions from storage tanks, respectively; Et0 is the 
VOCs generated from storage tanks calculated by the AP-42 empirical 
formula; Cout and Qout are the TVOC concentration (with unmeasurable 
species added) and the flue gas flow rate at the outlet of the APCDs for 
storage tanks, respectively; ηc is the capture efficiency for fugitive VOCs 
emissions, which was estimated to be 90%; and t is the operation time of 
storage tanks. Detailed information on the method can be found in 
Section S2.2 in the SI. 

2.3.3. Equipment leaks 
The estimation method for VOCs emissions from equipment leaks 

(US EPA, 2015) used in this study for Plant 1 and Plant 2 is shown as Eq. 
(3). 

El =
∑n

i=1

((
WFVOCs,i

WFTOCs,i

)

eTOCs,iti
)

(3)  

where El is the total VOCs emission from equipment leaks; eTOCs is the 
emission rate of the total organic compounds (TOCs) for an equipment 
component; WFVOCs and WFTOCs are the average weight fractions of 
VOCs and TOCs in the stream of the component; t is the operation time of 
the component; i is the component; and n is the number of components. 
The ratio of WFVOCs over WFTOCs was considered to be 1 in this study. 

The emission rate eTOCs was calculated using the correlation equation 
method (MEP, 2015) as shown in Eq. (4). 

eTOCs =

⎧
⎨

⎩

e0 0 ≤ SV < 1
a⋅SVb 1 ≤ SV < 50000
ep SV ≥ 50000

(4)  

where SV is the screening value (Lev-On et al., 2007); a and b are the two 
parameters in the correlation equation; and e0 and ep are the default zero 
emission rate and the pegged emission rate, respectively. The parame-
terization scheme of each type of components is shown in Table S4. 

The distribution of leaks (Fig. S1) has significant influence on the 
total emission. The leak detection and repair (LDAR) program is an 
effective way for VOCs emission control for the process of equipment 
leaks in chemical plants. It uses portable VOCs monitoring instrument to 
detect SV at the seals, so as to repair the equipment leaks in time. The 
application of LDAR could change the distribution of leaks significantly. 
To evaluate the impacts of LDAR, three scenarios were established in 
this study for comparison. Scenario 1, without LDAR, adopted the dis-
tribution of leaks from an early study (Lev-On et al., 2007), while Sce-
narios 2 and 3 used the data from a recent LDAR report for Plant 1 before 
and after repairing, respectively. The distribution of emission rates from 
Lev-On et al. (2007) was also adopted for the probabilistic model 
described in Section 2.4. More detailed information can be found in 
Section S2.3 in the SI. 

2.3.4. Wastewater collection and treatment system 
The wastewater system consists of the collection unit and the treat-

ment unit. The emission from the wastewater treatment unit was 
calculated based on the TVOC concentration in the exhausted flue gas. 
Due to the lack of information, the emission from the wastewater 
collection unit was estimated using the emission factor method. There-
fore, the best available estimation method for the wastewater system in 
this study is shown as Eq. (5). 

Ew =Ewc + Ewt = EFwcAw + CoutQoutt (5)  

where Ew is the total VOCs emission from the wastewater system; Ewc 
and Ewt are the emissions from the collection unit and the treatment unit, 
respectively; EFwc is the VOCs emission factor for the collection unit 
(Zhang et al., 2019); Aw is the total amount of wastewater; Cout and Qout 
are the TVOC concentration and the flue gas flow rate at the outlet of the 
APCDs for wastewater treatment, respectively; and t is the operation 
time of the wastewater treatment unit. Detailed information on the 
method can be found in Section S2.4 in the SI. 

2.4. Models for VOCs emission estimation 

Three models at different accuracy level were used in this study for 
VOCs emission estimation. Higher level models produce more accurate 
estimates. 

2.4.1. Process-based emission factor model (Model 1) 
If basic information on VOCs emission processes is accessible, the 

process-based emission factor model can be adopted, shown as Eq. (6). 

E=
∑m

j=1

(
EFj ⋅Aj⋅

(
1 − ηj

))
(6)  

where EFj is the uncontrolled emission factor for process j; Aj is the ac-
tivity level of emission process j; and ηj is the overall VOCs removal 
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efficiency of APCDs used for emission process j. It should be noted that 
the emission factors and activity levels for each process are in different 
forms. Details on Model 1 for each process can be found in Section S3 in 
the SI. All the emission factors and removal efficiencies were listed in 
Section S3 and Table S5–S7. 

2.4.2. Deterministic process-based model with best available methods 
(Model 2) 

All the best available estimation methods for key processes in the two 
tested plants have been introduced in Section 2.3. If detailed informa-
tion for each process is available as it was in this study, the process-based 
model with best available methods can be used. In Model 2, the total 
VOCs emissions from the two plants were calculated as the sum of VOCs 
emission from each process, following Eq. (7). 

E=
∑m

j=1
Ej (7)  

where Ej is the estimation of the VOCs emission from process j based on 
the best available method for process j. 

2.4.3. Probabilistic process-based model with best available methods 
(Model 3) 

The two models introduced above were all deterministic. However, a 
number of key parameters used in the best available estimation methods 
in Model 2 were skewedly distributed, indicating that the arithmetic 
mean values used for parameterization could lead to bias in VOCs 
emission estimation. Therefore, a probabilistic process-based model 
with best available estimation methods (Model 3) was developed in this 
study. Model 3 was based on the Monte Carlo simulation in which the 
probability distribution of the input parameters could be passed on to 
the final outputs (Romano et al., 2004). Crystal Ball™, a popular soft-
ware for the Monte Carlo simulation (Liu et al., 2018; Simayi et al., 
2019; Sun et al., 2018; Zhao et al., 2011; Zhao et al., 2017b), was uti-
lized in this study. The times of simulation was set to be 10,000. The 
50th percentile (P50) was considered as the best estimate, and the un-
certainty range was at a confidence level of 95% (Zhao et al., 2017b). 

The activity levels were assumed to be normally distributed. The 
standard deviations were determined by the reliability of the data source 
and the accuracy of the data (Wei et al., 2011). The VOCs emission 
concentrations at the stack for the measurement-based methods were 
assumed to be lognormally distributed. The distribution parameters 
were based on the test results. The collection efficiencies for exhaust 
gases were assumed to be normally distributed as well, and the distri-
bution parameters were based on the collection method (Liang et al., 
2019). The distribution parameters for VOCs removal efficiencies were 
based on the measurements conducted in this study and the 
self-monitoring data by the two chemical plants. For the empirical for-
mula method, the distribution parameters were obtained from previous 
studies (Chen and Carter, 2020; Liu et al., 2015; Lu et al., 2013). Details 
of the probability distribution assumptions can be found in Section S4 
and Table S8–S9. 

2.5. Calculation method for OFP and SOAFP 

OFP and SOAFP of a VOCs emission source profile were calculated to 
evaluate the reactivity of VOCs emitted from the manufacturing of a 
certain product. OFPr denotes the weighted average maximum incre-
mental reactivity (MIR) based on the VOCs speciation profile, as shown 
in Eq. (8). 

OFPr =
∑n

i=1
(pi⋅MIRi) (8)  

where pi is the proportion of VOCs species i emitted from the 
manufacturing of a certain product; MIRi is the maximum incremental 

reactivity of VOCs species i; and n is the number of VOCs species. The 
MIR values were obtained from Carter (2010). 

SOAFPr denotes the weighted average SOA yield based on the VOCs 
speciation profile, as shown in Eq. (9). 

SOAFPr =
∑n

i=1

(
pi⋅YSOA,i

)
(9)  

where YSOA,i is the corresponding SOA yield of VOCs species i, which was 
obtained from previous studies (Wu and Xie, 2018; Wu et al., 2017); and 
n is the number of VOCs species. 

MIR values and SOA yields of different VOCs species used in this 
study were listed in Table S10. 

3. Results and discussion 

3.1. Concentrations and speciation profiles of VOCs emissions 

3.1.1. Plant 1 for resin production 
Table 1 shows the results from VOCs emission measurements in the 

two tested plants. The total concentrations of the 108 VOCs species 
measured by the GC-MS/FID system were 1.9, 4.0, 30.8, 3.4, and 6.7 
mg/m3 in the exhaust flue gases from the five stacks in Plant 1 for the 
furan resin workshop, the phenolic resin workshop, the curing agent 
workshop, storage tanks, and the wastewater treatment system, 
respectively. With the unmeasurable characteristic species added (as 
illustrated in Section 2.3.1), the TVOC concentrations in the exhaust flue 
gases from stacks for the furan resin workshop, the phenolic resin 
workshop, and storage tanks were estimated to be 10.2, 14.5, and 9.0 
mg/m3, respectively. However, the corresponding NMHC concentra-
tions (unit: mg C/m3) at these three stacks were all higher than the 
TVOC concentrations. The discrepancies could be caused by the high 
uncertainty in the estimates from the mass balance method and the 
different species that are detectable by the GC-MS/FID method and the 
portable NMHC analyzer. It should be noted that, although known as 
“hydrocarbons” analyzer, the NMHC analyzer is able to detect a 
considerable amount of OVOCs with small molecular weight (Gierczak 
et al., 2017; Jorgensen et al., 1990). The APCD combinations in Plant 1 
were all ACA-based, with choices of alkali spray (AS), water spray (WS), 
gas-water separator (GWS), and photocatalytic oxidation (PCO) up-
stream. The TVOC removal efficiencies of APCDs for the furan resin 
workshop and the phenolic resin workshop were both around 87%. 

Speciation profiles of VOCs emissions for tested processes were ob-
tained from the GC-MS/FID method, as demonstrated in Fig. 1. The 
dominant species emitted from the furan resin workshop were furfuryl 
alcohol (32.5%) and formaldehyde (29.1%), which were originated 
from the raw materials for furan resin production. For the stack gas of 
the phenolic resin workshop, naphthalene, formaldehyde, and phenol 
contributed 41.4%, 21.4%, and 7.1% to the total emissions, respectively. 
Naphthalene was used as the solvent, and formaldehyde and phenol 
were the raw materials for production. For the curing agent workshop, 
n-nonane (27.3%), toluene (19.7%) and ethylbenzene (19.6%) were the 
dominant species. Toluene (20.0%), naphthalene (18.1%), phenol 
(17.9%), furfuryl alcohol (7.9%), and ethylbenzene (6.0%) dominated 
the profile for storage tanks, which could be due to the large turnover 
and high volatility of these substances. Ethylbenzene, toluene, naph-
thalene and m/p-xylene, accounting for 30.6%, 16.5%, 15.4%, and 9.1% 
of total VOCs emissions, respectively, were abundant for wastewater 
treatment. Overall, OVOCs, halohydrocarbons, and alkanes took the 
lead in the speciation profile for Plant 1. 

3.1.2. Plant 2 for paint production 
Plant 2 is a small-scale enterprise with only one main workshop. 

Stack and fugitive VOCs emissions were tested for the main workshop. 
Stack flue gases were measured under two operational conditions 
(Table 1). Under Condition 1 with only 2 reactors in operation, the total 
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concentration of the 108 measured VOCs species in the stack exhaust 
flue gas was 45.7 mg/m3. With the unmeasurable characteristic species 
added (as illustrated in Section 2.3.1), the TVOC concentration in the 
stack exhaust flue gas was estimated to be 58.0 mg/m3. Under Condition 
2 with 20 reactors operating simultaneously, the NMHC concentration 
at the outlet of APCDs turned out to be 399.4 mg/m3 (too high for the 
GC-MS/FID method). The overall VOCs removal efficiency of the APCD 
combination of AS + PCO + ACA increased from 16% to 85% when the 

VOCs concentration at the inlet increased, which was consistent with the 
conclusion of Su et al. (2016) that higher VOCs concentration at the inlet 
leads to higher removal efficiency of APCDs and more stable effective-
ness as well. The fugitive VOCs emission concentrations in the main 
workshop during meal loading and unloading periods were 5.5 and 6.5 
mg/m3, respectively, which were higher than under the regular condi-
tion (1.8 mg/m3), because the loading and unloading processes were not 
completely enclosed and the fugitive gases were not well collected by 

Table 1 
VOCs concentrations at different sampling sites and removal efficiencies of APCDs in the two tested plants.  

Plant Process APCDs Inlet/ 
outlet 

VOCs a (mg/ 
m3) 

TVOC b (mg/ 
m3) 

NMHC (mg/ 
m3) 

Efficiency of APCDs 
(%) 

Resin production 
plant 

Workshop 1 (stack, furan 
resin) 

AS + GWS + ACA Inlet 29.7 78.5 – 87.1 
Outlet 1.9 10.2 30.5 

Workshop 2 (stack, phenolic 
resin) 

AS + GWS + ACA Inlet 79.1 110.7 – 86.9 
Outlet 4.0 14.5 38.1 

Workshop 3 (stack, curing 
agent) 

WS + GWS + ACA 
(malfunction) 

Inlet – – – – 
Outlet 30.8 30.8 – 

Storage tanks (stack) WS + AS + GWS + ACA Inlet – – – – 
Outlet 3.4 9.0 42.0 

Wastewater treatment (stack) AS + GWS + PCO + ACA Inlet – – – – 
Outlet 6.7 6.7 – 

Workshop 2 (fugitive)   4.6 – –  
Paint production 

plant 
Workshop (stack, Condition 1 
c) 

AS + PCO + ACA Inlet 54.0 68.8 – 15.6 
Outlet 45.7 58.0 – 

Workshop (stack, Condition 2 
d) 

AS + PCO + ACA Inlet – – 2680.1 85.1 e 

Outlet – – 399.4 
Workshop (fugitive, regular)   1.8 – – – 
Workshop (fugitive, meal 
loading)   

5.5 – – – 

Workshop (fugitive, meal 
unloading)   

6.5 – – – 

Notes: a: “VOCs” here represents the total concentration of the 108 VOCs species; b: “TVOC” represents the total VOCs concentrations including the unmeasurable 
characteristic species calculated by the mass balance method; c: “Condition 1” stands for the condition when only 2 reactors were in operation; d: “Condition 2” stands 
for the condition when 20 reactors were in operation; e: the VOCs removal efficiency here was calculated from NMHC results. AS: alkali spray; WS: water spray; GWS: 
gas-water separator; PCO: photocatalytic oxidation; ACA: activated carbon adsorption. 

Fig. 1. Speciation profiles of VOCs emissions from each process in the two tested plants.  
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the gas-collecting hoods. 
As shown in Fig. 1, the dominant VOCs species in the stack flue gas 

from the main workshop in Plant 2 were 2-butanone (15.1%), butyl 
acetate (13.2%), 2-propanol (10.0%), butanol (8.2%), o-ethyltoluene 
(6.9%), and ethylbenzene (5.6%), which mainly came from raw mate-
rials and organic solvents. The fugitive VOCs speciation profiles during 
meal loading and unloading processes were similar to that under the 
regular condition, mainly including trimethylbenzene, ethylbenzene, o- 
ethyl toluene, and xylene, which were consistent with the main con-
stituents of raw and auxiliary materials. Overall, OVOCs and halohy-
drocarbons dominated the speciation profile for Plant 2. 

3.2. Comparison with existing VOCs speciation profiles 

Based on the weighted-averaging approach, VOCs speciation profiles 
for different products from Plant 1 were established after incorporating 
stack emissions from storage tanks and wastewater treatment, as shown 
in Fig. 2. The most abundant categories of VOCs species were OVOCs 
(58.5%), aromatics (25.1%), and alkanes (14.3%) in furan resin pro-
duction, aromatics (57.5%) and OVOCs (36.5%) in phenolic resin pro-
duction, and aromatics (58.5%) and alkanes (34.5%) in sulfonic acid 
curing agent production. The VOCs emission profiles for different resin 
production processes were compared in Fig. 2. The dominant VOCs 
species in the emission profiles for polyethylene (PE) and polypropylene 
(PP) resins production are alkenes, for polystyrene (PS) resin production 
are aromatics, for polyvinyl chloride (PVC) resin production are hal-
ohydrocarbons, and for acrylonitrile butadiene styrene (ABS) resin 
production are aromatics and others (Chen et al., 2017; Hsu et al., 2007; 
Wu and Xie, 2017; Zhao et al., 2017a). For dedicated resins production, 
the dominant VOCs species for polyurethane (PUR) and polyacrylic acid 
(PAA) resins production are aromatics (Chen et al., 2017; Hsu et al., 
2007), for polypropylene glycol (PPG) resin production are OVOCs 
(Zhao et al., 2017a), and for furan and phenolic resins production are 
OVOCs and aromatics based on this study. 

For paint production, the VOCs species are mainly originated from 
raw materials and solvents used in the paint manufacturing process. 
Results from Plant 2 in this study exhibited consistency with most of 

existing studies (Chen et al., 2017; Shao, 2019; Yu, 2012; Zhai et al., 
2018; Zheng et al., 2013; Zhou et al., 2018), as shown in Fig. 2. Aro-
matics and OVOCs had equivalent contributions (48.0% and 48.5%, 
respectively) to the total VOCs emissions. Chen et al. (2017) claimed the 
dominance of aromatics, while Zhou et al. (2018) and Zhai et al. (2018) 
found the proportion of OVOCs slightly higher than aromatics. Most of 
the unidentified VOCs species in the profiles from the SPECIATE data-
base were likely OVOCs which were unmeasurable with the PAMS 
calibration for most SPECIATE profiles. Results from the two chemical 
plants tested in this study have contributed updates to the VOCs emis-
sion profile database in China. 

3.3. OFPr and SOAFPr in the two tested plants 

As shown in Table 2, the OFPr for the production of furan resin, 
phenolic resin, sulfonic acid curing agent, and paint in this study were 
5.93, 5.08, 2.80, and 4.02, respectively. Formaldehyde and furfuryl 

Fig. 2. Speciation profiles of VOCs emissions by category for different resins and paint manufacturing.  

Table 2 
OFPr and SOAFPr for the production of resins and paints in different studies.  

Product OFPr SOAFPr Source of VOCs profiles 

General resins PE 1.68 0.011 Li et al. (2019a, 2019b); Wu 
et al. (2017) 

PP 4.56 0.017 Li et al. (2019a, 2019b); Wu 
et al. (2017) 

PVC 1.63 – Li et al. (2019a, 2019b) 
PS 1.86 0.041 Li et al. (2019a, 2019b); Wu 

et al. (2017) 
ABS 1.66 0.033 SPECIATE 

Dedicated 
resins 

Furan resin 5.93 0.068 This study 
Phenolic 
resin 

5.08 0.167 This study 

Sulfonic acid curing agent 2.80 0.165 This study 
Paint 4.02 0.033 This study 
Paint 3.41 0.056 Li et al. (2019a, 2019b); Wu 

et al. (2017) 
Paint 2.69 0.051 Liang et al. (2020) 

Notes: PE: polyethylene resin; PP: polypropylene resin; PVC: polyvinyl chloride 
resin; PS: polystyrene resin; ABS: acrylonitrile butadiene styrene resin. 
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alcohol contributed 43.5% and 35.9% to the total OFPr for furan resin 
production, respectively. Formaldehyde was also responsible for 34.0% 
of the total OFPr for phenolic resin production, followed by naphthalene 
(26.6%), m-diethylbenzene (10.3%), and 1,2,4-trimethylbenzene 
(9.9%). The largest contributors to the total OFPr for sulfonic acid 
curing agent production were toluene (36.3%), ethylbenzene (19.9%), 
and m/p-xylene (16.6%). For paint production, 1,3,5-trimethylbenzene, 
1,2,3-trimethylbenzene, m/p-xylene, o-ethyltoluene and o-xylene 
contributed 15.5%, 13.4%, 9.9%, 9.5% and 9.1% to the total OFPr, 
respectively. 

The SOAFPr for the production of furan resin, phenolic resin, sulfonic 
acid curing agent, and paint in this study were 0.068, 0.167, 0.165 and 
0.033, respectively. Toluene (43.3%), n-nonane (20.5%) and naphtha-
lene (13.3%) were the top three contributors to the total SOAFPr for 
furan resin production, while Naphthalene (72.6%) and phenol (19.2%) 
took the lead for phenolic resin production. Toluene (53.3%) and n- 
nonane (19.5%) were the main contributors to the total SOAFPr for 
sulfonic acid curing agent production. For paint production, toluene 
(24.5%), o-xylene (14.7%), o-ethyltoluene (11.8%) and m/p-xylene 
(11.0%) contributed the most to the total SOAFPr. 

According to the comparison in Table 2, the OFPr values for the 
production of the two dedicated resins in this study were 3–4 times 
higher than those for most general resins (except for PP). The SOAFPr 
values for the production of the two dedicated resins (especially 
phenolic resin) and sulfonic acid curing agent were much higher than 
those for general resins as well. The OFPr value for paint production in 
this study was higher than those calculated from the VOCs speciation 
profiles from previous studies (Wu et al., 2017; Li et al., 2019b; Liang 
et al., 2020), while the SOAFPr value was lower. The comparison sug-
gests that the overall OFP and SOAFP for the resin industry in China 
could be underestimated if the VOCs speciation profiles for dedicated 
resin production are simply inherited from general resins. 

3.4. Comparison of VOCs emission estimations by the three models 

3.4.1. Overall emissions 
Fig. 3 shows the comparison of VOCs emission estimates by the three 

models. The overall VOCs emission estimates by Model 2 for both tested 
plants were much lower than the yields from Model 1. With detailed 
information considered, Model 2 provided more reasonable estimates 
for each process. The overall VOCs removal efficiencies benefited from 
the fugitive gas collection systems and the APCDs applied were esti-
mated to be 54% and 51% for Plant 1 and Plant 2, respectively. As shown 
in Fig. S2, for Plant 1 without APCDs, the VOCs emissions from 
manufacturing lines, storage tanks, and loading operations accounted 
for 65.1%, 12.3%, and 12.1% of the overall emission, respectively. With 
the applied APCDs, the contributions of manufacturing lines and storage 
tanks dropped to 47.9% and 5.3%, respectively, while the contribution 

of loading operations rose up to 26.1%. The main workshop in Plant 2 
was the dominant emission process. With the installation of APCDs, the 
proportion of manufacturing line fugitive emissions in the total emission 
decreased from 74.5% to 64.1%. The overall VOCs emissions estimated 
by Model 3 were 13.2 t and 12.3 t for Plant 1 and Plant 2, respectively, 
both of which were slightly higher than the estimates from Model 2. This 
indicated the positively skewed distribution of the outcome from Model 
3. The dominant processes in Plant 1 and Plant 2 were both 
manufacturing lines, contributing 65.3% and 99.5% of the total emis-
sion, respectively. 

3.4.2. Manufacturing lines 
The annual VOCs emissions through manufacturing lines estimated 

by Model 1 were 13 and 7.8 times that estimated by Model 2 for Plant 1 
and Plant 2, respectively. The large discrepancies implied that the 
emission factors for dedicated resin production (Bo et al., 2008; TEPA, 
2009) and paint production (US EPA, 2006) were either outdated or not 
widely applicable. Fugitive emissions play an important role in 
manufacturing line emissions, especially for batch reactors in chemical 
plants with meal loading and unloading operations. The two tested 
plants both had fugitive emission collection facilities, and a large 
amount of the original fugitive gases were collected and treated as stack 
gases. Based on Model 2, the ultimate fugitive emissions accounted for 
29% and 64% of the total manufacturing line emissions for Plant 1 and 
Plant 2, respectively (Fig. S2). The overall fugitive gas collection effi-
ciency for the manufacturing lines in Plant 1 was higher than Plant 2, 
which was mainly due to the plant scale. The VOCs emission from 
manufacturing lines in Plant 1 estimated by Model 3 was 31% higher 
than by Model 2. This was mainly caused by the negatively skewed 
distribution of the VOCs removal efficiency of APCDs. 

3.4.3. Storage tanks 
The annual VOCs emission from storage tanks in Plant 1 estimated by 

Model 1 was 12 times the estimate from Model 2, indicating that the 
existing emission factors (TEPA, 2009) for the process of storage tanks 
(Table S6) were probably not suitable for resin production plants. These 
emission factors were designed only for fixed-roof tanks and obtained 
based on the regression formula for storage tank emissions according to 
AP-42 and characteristics of storage materials. However, the VOCs 
emission rates of fixed-roof tanks were estimated to be higher than inner 
and external floating-roof tanks (Lu, 2017; Liu et al., 2020; Jovanovic 
et al., 2010). The differences in parameters for tank structure and 
operation, physiochemical properties of materials, and meteorological 
factors lead to large discrepancies in emissions. Model 3 considered the 
probability distribution of these parameters and yield an estimate of 
0.58 t VOCs emission from storage tanks in Plant 1, which was 8.8% 
lower than the estimate by Model 2. 

3.4.4. Equipment leaks 
The largest discrepancy between Model 1 and Model 2 occurred in 

the emission process of equipment leaks. The emission estimate from 
Model 1 was over two orders of magnitude higher than Model 2. There 
were two major drivers for the significant difference: one was the un-
suitable emission factors (Table S7) used in Model 1 for equipment leak 
emission estimation (US EPA, 1995) which were mainly for the petro-
leum refineries, resulting in the likely overestimation of emission rates 
by Model 1; and the other was the application of the LDAR program, 
resulting in the change of the number and the distribution of leaks. To 
investigate the impacts of the two drivers, a case study on the VOCs 
emission from equipment leaks in Plant 1 was conducted. Four methods 
were applied to the estimation of VOCs emissions from the leaks of 
flanges, pumps, and valves. Fig. S3 shows the comparison of emission 
estimates using the emission factor method and the correlation equation 
method with three scenarios (as introduced in Section 2.3.3). The esti-
mates from the emission factor method were 1–2 orders of magnitude 
higher than the results from the correlation equation method without 

Fig. 3. Comparison of VOCs emission estimates for the two tested plants by 
process using the three models. 
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LDAR information. With LDAR data provided, the estimates from the 
correlation equation method got about one more order of magnitude 
lower for leaks of pumps and valves. In the scenario with LDAR after 
repairing, the emission estimate for leaks of flanges was 58% lower than 
the case before repairing. The comparison suggests that the VOCs 
emissions from equipment leaks with LDAR application in China could 
be largely overestimated. 

The correlation equation method with the LDAR data was evaluated 
to be the best available estimation method for equipment leaks. How-
ever, the existing correlation equation method still has two major lim-
itations: (1) local studies (Gao et al., 2016; Min et al., 2020) found that 
the emission rates measured by the bagging method for light liquid 
valves, connectors, and flanges were lower than the estimates by the 
correlation equations announced by US EPA (1995); (2) there might be 
non-standard operations for the LDAR system, resulting in the under-
estimation of VOCs emissions. Therefore, more bagging measurements 
and LDAR auditing are required to establish localized correlation 
equations and distribution of leaks. 

3.4.5. Wastewater collection and treatment system 
Due to the limitation of available test results, the best available 

estimation methods to estimate VOCs emissions from the wastewater 
system were the emission factor method and the measurement-based 
method for the collection unit and the treatment unit, respectively. 
The VOCs emission from the wastewater collection unit accounted for 
79.6% of the total emission from the wastewater system in Plant 1. 
Therefore, results from Model 1 and Model 2 were close to each other. 
VOCs emission from the wastewater collection and treatment system is 
affected by wastewater temperature, meteorological condition, the type 
of treatment system, etc. (Zhang et al., 2019), and thus localized emis-
sion factors are required for more accurate estimation. The estimate by 
Model 3 was 42% lower than Model 2, which was mainly caused by the 
positively skewed distribution of the emission factor adopted for the 
wastewater collection unit. 

3.5. Uncertainty analysis 

Model 3 was utilized for uncertainty analysis by emission process. 
The uncertainty ranges with 95% confidence interval are shown in 
Fig. 3. The overall uncertainty range for the total emission from Plant 1 
was estimated to be (− 48%, +147%). The uncertainty ranges for 
manufacturing lines, storage tanks, equipment leaks, and the waste-
water system in Plant 1 were (− 57%, +221%), (− 60%, +310%), 
(− 97%, +3062%), and (− 69%, +555%), respectively. In Plant 2, the 
overall uncertainty range was calculated to be (− 48%, +139%). Existing 
VOCs emission inventories for the industrial sector on a regional scale 
(Fu et al., 2013; Huang et al., 2011; Zhao et al., 2017a) had an uncer-
tainty range of about (− 60%, +150%). These inventories were all 
established by the product-based emission factor model. The uncertainty 
ranges of these inventories were estimated based on the sources (local or 
exotic) and numbers of available emission factors, which was essentially 
semiquantitative. When the inventory scale goes down to the enterprise 
level, with the same model for emission estimation, the uncertainty level 
would be much higher according to the uncertainty propagation prin-
ciple. It could be implied that the method for uncertainty analysis in this 
study was a quantitative attempt for the VOCs emission estimation, and 
the uncertainty ranges for the overall VOCs emission estimates were 
much lower than existing studies. Therefore, the probabilistic 
process-based model with best available methods developed in this 
study proved to be a better way for quantitative uncertainty analysis and 
could largely reduce the overall uncertainty if detailed information is 
provided. Nonetheless, the probability distributions of the key param-
eters used in Model 3 were based on available data. A great amount of 
information was based on exotic tests or estimation that could be 
different from the actual situation in China. More localized data should 
be obtained through field investigation, especially for emission 

processes like equipment leaks. More localized auditing data from the 
LDAR program could be utilized to produce distribution of leaks and 
make more accurate fugitive VOCs emission estimation. 

4. Conclusions 

Two chemical plants in eastern China were tested in this study. 
OVOCs and aromatics dominated the VOCs speciation profiles for both 
dedicated resin production and paint production. The proportions of 
OVOCs in the speciation profiles for the manufacturing of the two types 
of dedicated resins measured in this study were much higher than the 
proportions for general resins. The overlook of OVOCs in the synthetic 
resin industry could lead to underestimation of the overall OFP and 
SOAFP in existing VOCs emission inventories for the chemical in-
dustries. The VOCs emissions from the two tested plants were estimated 
using three process-based models. With detailed information on key 
processes incorporated, the two models with best available estimation 
methods (Model 2 and Model 3) showed better performance than the 
emission factor model (Model 1). Based on results from Model 3, 
manufacturing lines were responsible for 65% of the total VOCs emis-
sions in Plant 1. The probabilistic process-based model (Model 3) 
developed in this study could largely reduce the overall uncertainty of 
VOCs emission estimation, and proved to be a promising approach for 
both VOCs emission inventory development and quantitative uncer-
tainty analysis. We suggest policy makers organize more field mea-
surements and investigations, and adopt this methodology to develop 
more accurate VOCs emission inventories. 
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