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A B S T R A C T   

Near-surface ozone causes damages on both crop and forest but their long-term spatiotemporal changes in China 
have been insufficiently explored, preventing comprehensive policy making with food security and climate 
targets. Moreover, limitation exists in the current metrics for long-term regional ozone risk assessment, AOT40 
(the accumulated hourly ozone over a threshold of 40 ppbv) and PODY (phytotoxic ozone dose over a threshold 
of Y nmol ozone m− 2 PLA s− 1), with ignorance of meteorological influence for the former and complicated data 
collection and calculation procedures for the latter. Here, we developed a new metric for ozone-induced risk on 
winter wheat, O3MET, which can be easily derived based on ozone concentrations and meteorological variables, 
and is suitable for long-term assessment of ozone-induced wheat loss at the regional scale. Combining with 
existing metric for forest (O3RH), we comprehensively quantified the ozone damages on winter wheat yield and 
forest gross primary production (GPP) for mainland China during 2010–2021, the period with fast growth of 
ozone level across the country. The annual average losses of wheat yield and forest GPP were estimated at 26.5 
Mt and 552.6 TgC, accounting for 17% and 4% of the total yield and GPP without ozone impact, respectively. 
Heavy dual ozone-induced damages on both wheat and forest were presented in East and South China. The 
ozone-induced wheat yield loss and forest GPP loss were estimated to increase at a rate of 1.8 Mt/yr and 13.9 
TgC/yr for the entire country, respectively, driven mainly by the enhanced ambient ozone level within the 
research period. Besides ecological impact, the ozone pollution in the developed eastern China resulted in serious 
health burden as well, thus effective actions on ozone pollution alleviation in the region is crucial for reducing its 
ecological and health risks simultaneously.   

1. Introduction 

Near-surface ozone is produced through photochemical reactions of 
nitrogen oxides (NOX) and volatile organic compounds (VOCs), under 
the condition with relatively high temperature and low humidity. It 
impairs plant photosynthesis and accelerates plant senescence, ulti
mately leading to lower plant protein and yields (Feng et al., 2008, 
2011; Broberg et al., 2015). Given its complex nonlinear response to 
precursors, China’s ozone pollution level has kept increasing and 
reached the peak by 2019, even with stringent emission control actions 
since 2013 (Li et al., 2020). To stress the air quality and climate issue 

simultaneously, China is conducting a series of polices on energy 
structure adjustment and industrial pollutant abatement, under the 
carbon peaking and carbon neutrality strategy. Even with a declining 
trend, the future ozone level is predicted to be still larger than the World 
Health Organization standards (100 μg/m3) for a long period (Shi et al., 
2021), leading to a continuous damage on crops and forests. 

As the third most important crop with a global production of 775 
million tons in 2021 (FAO, 2022), wheat is a plant susceptible to ozone 
exposure, and exaggerating ozone pollution was estimated to undermine 
the efforts to increase wheat yields over the world (Feng et al., 2022; 
Mills et al., 2018; Tai and Martin, 2017). China is the largest wheat 
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producing nation, accounting for 17.5% of global wheat yield, and the 
proportion of winter wheat reached 94% of total production (Feng et al., 
2019a,b). Precise quantification of the impact of increasing ozone 
pollution on yield loss of winter wheat provides important scientific 
basis to stress the national food security in China. Besides, China has 
been implementing one of the most ambitious afforestation programs in 
the world to elevate the ecological restoration and carbon sink of 
terrestrial ecosystems (Zhang et al., 2017). However, ozone pollution 
can weaken the gross primary productivity (GPP) of vegetation, and 
further reduce the uptake of carbon dioxide (CO2) by plants. It is iden
tified as one of the most important factors affecting carbon sink in 
terrestrial ecosystems (Yue et al., 2017). Most of existing studies eval
uated single ozone-induced impact on vegetation (crop yield or forest 
productivity), but rarely explored the similarity and difference in spatial 
and temporal distribution between the two. A comprehensive analysis 
on both crop and forest damages attributable to ozone exposure, as well 
as their main drivers, will substantially improve the understanding of 
the diversity and complexity of ecological impact of ozone pollution, 
and help policy design to reduce ozone pollution more reasonably and 
efficiently. 

Ozone damaging metrics can be classified into two categories. One is 
the ozone exposure metric represented by AOT40, which is defined as 
the cumulative value of hourly ozone concentration exceeding 40 ppbv 
during plant growing season. The other is the ozone flux metric repre
sented by PODY (phytotoxic ozone dose over a threshold of Y nmol ozone 
m− 2 PLA s− 1), which takes into account not only the ozone concentra
tion and exposure time, but also the influence of biological and envi
ronmental conditions on leaf stomatal conductance. As it reflects the 
actual stomatal ozone uptake flux of plants, PODY is superior to AOT40 
in assessing the adverse effects of ozone on plants. Feng et al. (2019a,b) 
assessed the ozone-induced yield loss of winter wheat in China from 
2015 to 2016 using AOT40 and POD12, respectively, and found smaller 
yield loss calculated with POD12 than AOT40 and clear variability in 
spatial distribution between the two. However, the estimation of PODY 
requires hourly ozone concentrations and a series of factors representing 
environmental stresses and phenology. Station level PODY can be rela
tively easy to access, but the complexity of the calculation process for 
each factor and the difficulty of obtaining hourly ozone concentrations 
and meteorological data (such as photosynthetic photon flux density, 
soil water potential) with full spatial and temporary coverage make it 
difficult to assess the ozone risk over large areas and long time series. 
The ozone exposure metric AOT40 has been more commonly applied in 
quantifying the effect of ozone pollution on crop yield and forest pro
ductivity at the regional or globe scales (Feng et al., 2022; Ren et al., 
2020; Feng et al., 2019a,b; Zhao et al., 2018; Li et al., 2020; Tai and 
Martin, 2017). Such application could easily exaggerate the role of 
ambient ozone concentration change on driving the spatial and temporal 
variation of ozone-induced damage, as the influences of meteorological 
factor on vegetation were not considered. The limitation would prevent 
correct understanding of the causes of ozone-related risks and reason
able policy making of pollution alleviation. For forest ecosystem, Gong 
et al. (2021) established a new metric O3RH, which incorporates ozone 
levels and meteorological factors and can be simply derived using daily 
ozone concentrations and relative humidity, to assess the long-term 
ozone risk assessment on vegetation GPP at the regional scale. While a 
new metric with simplified procedure and easily accessible input data is 
still missing in the assessment of long-term trends and spatial patterns of 
ozone impacts on crop production. 

To date, very few studies comprehensively investigated long-term 
ozone impacts on crop production and forest GPP in China with inte
grated consideration of meteorological factors and ozone concentra
tions. This study, therefore, combined a high-resolution ozone 
concentration dataset obtained through a modified machine learning 
technique and a generalized additive model (GAM) to develop a new 
metric (O3MET) for assessing the ozone-induced risk on winter wheat. 
We then applied O3MET to estimate the long-term spatiotemporal 

patterns of ozone impact on wheat yield, as well as the main drivers of 
changing wheat and forest loss. We also applied O3RH developed by 
Gong et al. (2021) to estimate the long-term variability of ozone-induced 
forest GPP loss and its main drivers. We further assess the similarity and 
difference in spatial and temporal distributions between the two cate
gories of ozone-induced risks on vegetation, for better policy making of 
ozone pollution abatement. 

2. Methods and materials 

2.1. Simplified metrics considering ozone and meteorology factors for 
calculation of wheat yield and forest GPP loss 

To easily and effectively quantify the long-term winter wheat yield 
loss from ozone pollution at the regional scale, we developed a simpli
fied metric (O3MET) that includes the influences of both near-surface 
ozone level and meteorological factors, following the steps described 
below. First, based on available POD12 and AOT40 estimations at 273 
stations in China in 2015 and 2016 (Feng et al., 2019a,b), we defined an 
index gmet as POD12/AOT40, which represents the effect of meteoro
logical factors on the magnitude of ozone uptake by wheat. The equa
tions of POD12 and AOT40 calculation are described in Text Section 1 in 
the Supplement. 

To predict the spatiotemporal pattern of gmet across the country, we 
then derived a generalized additive model (GAM), which applied 
smoothing function (s (3)) to describe the nonlinear relationship be
tween gmet and key meteorology factors affecting the calculation of 
stomatal conductance (reflected by flight, ftemp, fswp, and fvpd, in Eq. S4 in 
the Supplement). Those include the total precipitation (TP), 2 m-tem
preture (T2M) and surface downwelling shortwave radiation (RSDS):  

gmet = s(TP) + s(T2M) + s(RSDS)                                                     (1) 

Finally, the simplified metric O3MET can be determined as:  

O3MET = max((O3-TH) × max(gmet,0),0)                                           (2) 

where O3 represents growing season-averaged maximum daily average 
8-h (MDA8) ozone concentration (ppbv), and TH is the threshold of 
MDA8 ozone concentration for wheat damage (ppbv). Attributed to the 
detoxification mechanism of vegetation for harmful substances, ozone- 
induced damage is expected to only occur when MDA8 ozone concen
tration is larger than TH. We calculated the Pearson correlation co
efficients between POD12 and O3MET estimated with different optional 
TH levels, and 30 ppbv was finally chosen, with the strongest correlation 
(R = 0.73) found between O3MET and POD12 (Fig. S1 in the 
Supplement). 

O3RH is a simplified ozone damaging metric for vegetation GPP 
developed by Gong et al. (2021) that can be applied to deciduous 
broadleaf forest, evergreen coniferous forest, and evergreen broadleaf 
forest.  

O3RH = f(O3) × f(RH)                                                                    (3)  

f(O3) = max(0,O3-20)                                                                       (4)  

f(RH) = max(0,min(RH-40%,40))                                                       (5) 

where O3 is the growing season-averaged MDA8 ozone concentrations 
(ppbv) and RH is the growing season-averaged relative humidity (%). 

Due to the large extent of wheat and forest planting from cold 
temperate to tropical climate in China, we defined the duration of 
vegetation growing season according to their geographic distribution. 
For wheat, the growing season was defined from 45 days before flow
ering to 30 days after flowering (Feng et al., 2019a,b). We obtained the 
gridded flowering data of wheat through Kriging interpolation based on 
station observations. For forest, the growing season was defined by a 
simple latitude model (UNECE, 2017). Fig. S2 in the Supplement illus
trates the spatial distribution of the day of year (DOY) for the start and 
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end of growing season of wheat and forest. 
We obtained relative yield loss (RYL) for winter wheat at 273 stations 

using POD12 estimations and flux-based response function reported in 
Feng et al. (2019a,b). We further established the relationship between 
O3MET and RYL of winter wheat (Eq. (6)) by performing a linear 
regression to the estimated RYL and O3MET at 273 stations. The square 
of correlation coefficient (R2) reached 0.53 (see detailed analysis eval
uation in Section 3.1). Wheat yield loss (WYL) was then calculated based 
on wheat yield (WY) and relative yield loss (RYL) with Eq. (7).  

RYL = 0.026 × O3MET+0.016                                                         (6)  

WYL=WY/(1-RYL) × RYL                                                                (7) 

Similarly, relative loss for forest GPP (RPL) was calculated with Eq. 
(8), which represents the multi-year average of the relationship between 
O3RH and RPL developed by Gong et al. (2021). The forest GPP loss 
(GPL) was calculated based on forest GPP and RPL using Eq. (9).  

RPL = 0.0065 × O3RH-0.0092                                                         (8)  

GPL = GPP/(1-RPL) × RPL                                                             (9)  

2.2. Data sources of ozone-wheat risk measurements, MDA8 ozone 
concentrations and meteorological and ecological information 

Estimations for POD12 and AOT40 at 273 stations in China were 
collected for 2015 and 2016 from Feng et al. (2019a,b). MDA8 ozone 
concentrations were estimated with an optimized machine learning 
model (Xgboost) at a horizontal resolution of 0.1◦ × 0.1◦, as described in 
our previous work (Wang et al. under review in Nature Geoscience). 
Xgboost model developed the comprehensive relationship between 
MDA8 ozone concentrations and both meteorological and chemical 
variables year by year, and satisfying model performances were ach
ieved for all years for the country (Fig. S3 in the Supplement). Meteo
rological parameters used for calculating ozone damaging risk were 
obtained from the fifth generation European Centre for Medium-Range 
Weather Forecasts (ECMWF) climate reanalysis (ERA5) with a hori
zontal resolution at 0.1◦ × 0.1◦. The annual wheat yield data from 2010 
to 2021 were obtained from the China Statistical Yearbook by province 
and then were gridded with a horizontal resolution at 10km × 10 km, 
according to the geographic distribution of wheat yield (Monfreda et al., 
2008). The gridded GPP data from 2010 to 2021 were extracted from 
Moderate-Resolution Imaging Spectroradiometer (MODIS) MOD17A2H 
product at a temporal resolution of 8 days and a horizontal resolution of 
500 m (https://search.earthdata.nasa.gov/search?q=MOD17A2H, last 
access: December 2022). We divided the original data of the product by 
8 to obtain the daily average GPP for the period. We further obtained 
gridded forest GPP data based on the forest biomass distribution map 
(https://geodata.cn). We used bilinear interpolation to resampled the 
meteorological data, wheat yield data and forest GPP data to the 0.1◦ ×

0.1◦grid, consistent with the grid of MDA8 ozone concentrations. As a 
summary, Fig. S4 in the Supplement briefly shows the workflow of this 
work, including data processing, model construction and prediction. In 
particular, the model evaluation of wheat yield loss will be presented in 
details in Section 3.1. 

3. Results and discussions 

3.1. Evaluation and application of O3MET 

Fig. S5a in the Supplement shows the performance of GAM which 
connected gmet and meteorology factors. The correlation between pre
diction and observation (R = 0.55, p < 0.05) indicates the model is 
capable of capturing the spatiotemporal variation of gmet. As a reference, 
the R commonly ranged between 0.39 and 0.84 in previous studies that 

applied statistical models to explore the effect of meteorological factors 
on plant growth (Dai et al., 2019; Mulder et al., 2017; Wang et al., 2015). 
The model residuals are normally distributed (Fig. S5b), implying the 
model contained all the important influencing factors. The variance 
inflation factors (VIF, 1/(1-R2), with R2 obtained from the regression of 
each explanatory variable against all other explanatory variables pre
sent in the model) for all meteorological factors are smaller than the 
threshold of 5 (1.17, 1.68 and 1.48 for TP, T2M, and RSDS respectively), 
indicating that there is no multicollinearity for the model (Huang et al., 
2020). 

Fig. S6 in the Supplement shows the partial response of meteoro
logical factors to gmet, and complex non-linear relationships between 
individual factors and gmet are found. Basically gmet rises with increasing 
TP even some fluctuations exist, as the elevated TP makes stomata open. 
Within the temperature range containing a large number of sampling 
points (285–290 K), gmet increases with growing temperature because 
leaves need to resist heat through enhanced transpiration by stomata. 
However, when the temperature is higher than 287 K, wheat reduces 
stomatal conductance to prevent excessive water loss from leaf, result
ing in a declining gmet. With growing light, gmet increases first and then 
decreases. At relatively low level, the increasing solar radiation can 
promote photosynthesis in plants, resulting in expanded stomata to 
absorb more CO2. When solar radiation reaches a certain threshold 
(1.1e+07 J/m2), further enhancement causes damage to the surface of 
plant leaves and thereby decreases stomatal conductance. As shown in 
Fig. 1, the spatial distribution of 2015–2016 averaged gmet predicted by 
GAM was consistent with the site-level result combining POD12 and 
AOT40. The site-level gmet was calculated to range from 0.01 to 1 and 
larger values occurred in Jiangsu and Anhui with relatively high tem
perature, radiation and precipitation. 

As described in Section 2.1, O3MET was obtained by combining gmet 
and ozone levels, and then applied to estimate RYL in this work (Eqs. (2) 
and (6)). Table S1 in the Supplement summarize and compare different 
metrics and ozone-yield response functions for agricultural crops re
ported by a variety of studies. The square of correlation coefficient (R2) 
of our model (0.53) is within the range of others (0.20–0.96). Given 
much more data points (and thereby scattered ones) of our model than 
those of others, we believe application of O3MET as a metric to evalue 
RYL is reasonable. To further prove the reliability of O3MET, we 
calculated the correlation coefficient and mean normalized bias between 
O3MET-based RYL (this work) and POD12-based RYL (Feng et al., 2019), 
as shown in Fig. S7 in the Supplement. The correlation coefficients for 
both 2015 and 2016 were greater than 0.75, and limited the mean 

Fig. 1. The 2015–2016 averaged gmet predicted from GAM (background) and 
that estimated from POD12 and AOT40 at 273 stations (circle). 
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normalized biases were found for the main wheat producing provinces, 
indcluding Hebei (− 0.8%~9%), Henan (16%~27%), Shandong (5% 
~19%) and Anhui (− 28%~22%). The comparion thus again justifies the 
application of O3MET. 

3.2. Spatial distribution of ozone damaging metrics 

Combining meteorological data and MDA8 ozone concentrations, we 
calculated O3MET and O3RH during the growing season of wheat and 
forest, respectively, for 2010–2021. Fig. 2a shows the spatial distribu
tion of O3MET on average between 2010 and 2021, with considerable 
variability for regions and provinces (see the region and province defi
nitions in Fig. S8 in the Supplement). Hotspots of O3MET were located 
mainly in Northwest and East regions, especially in Qinghai (6.7 ppbv), 
Tibet (6.5 ppbv), Shandong (6.4 ppbv) and Shanghai (6.2 ppbv). The 
areas with relatively low O3MET were located in South region, espe
cially Guangdong (1.0 ppbv), Guangxi (1.0 ppbv), Chongqing (1.6 ppbv) 
and Hunan (1.8 ppbv). The spatial distributions of O3MET and MDA8 
ozone concentration were not completely consistent with each other, as 
O3MET was also influenced by stomatal conductance indicated by gmet. 
For example, even though the MDA8 ozone concentrations in Northwest 
region (e.g. Qinghai and Tibet) were much lower than in East region (e. 
g. Shandong and Shanghai, Fig. S9a in the Supplement), relatively high 
O3MET was still found for the former while the values were relatively 
low for some provinces with high MDA8 ozone concentrations in the 
latter (e.g. 5.0 ppbv for Hebei, Fig. 2a). The stronger solar radiation in 
Northwest region promoted stomata opening, and consequently 
enhanced gmet (Fig. S9b) and ozone damage on wheat. 

The high O3RH existed mainly in East and South regions (Fig. 2b), 
especially in Jiangsu (11.0 ppbv), Shandong (9.9 ppbv), Anhui (9.8 
ppbv) and Hubei (9.4 ppbv) with both high MDA8 ozone concentrations 
and RH (Figs. S9c and d). Most of the provinces with low O3RH were 
located in Northwest and Northeast regions, especially Inner Mongolia, 
Ningxia, Heilongjiang and Xinjiang with the values smaller than 6.0 
ppbv. Similar with O3MET, although MDA8 ozone concentrations in 
some northern provinces (e.g., Hebei) were higher than southern ones 
(Fig. S9c), smaller O3RH were estimated for the former, attributed to the 
lower RH (Fig. S9d). 

3.3. Ozone-induced wheat yield loss and forest GPP loss across China 

3.3.1. Spatial distribution 
We calculated the ozone-induced wheat yield loss combining the 

annual wheat yield and O3MET estimated in Section 3.2. During 

2010–2021, the annual average of winter wheat yield loss was estimated 
at 26.5 Mt in mainland China, accounting for 17.3% of the gross wheat 
yield without ozone impact. Fig. 3a and Fig. S10b in the Supplement 
shows the spatial distributions of the annual ozone-induced wheat yield 
loss and gross wheat yield without ozone impact averaged between 2010 
and 2021, respectively. The spatial pattern of O3MET (Fig. 2a) was close 
to that of gross wheat yield (Fig. S10a), i.e., relatively large yield is 
found in East and Northwest regions and small in Northeast and South 
regions. The consistency of spatial distribution between O3MET and 
wheat yield thus resulted in severe ozone damage in the main wheat 
producing areas. The annual average yield losses were estimated at 24.3, 
1.2, 0.3, and 0.7 Mt for East, Northwest, Northeast and South regions, 
accounting for 92.0%, 4.5%, 1.1%, and 2.4% of the national total loss, 
respectively (Table S2 in the Supplement). East region has experienced 
the most serious ozone-induced damage on wheat yield, with the largest 
loss found in Henan, Shandong, Anhui and Hebei provinces at 7.4, 5.1, 
4.2, and 2.9 Mt averaged during 2010–2021, respectively (Fig. 3a and 
Table S2). 

The forest GPP loss was calculated by combining O3RH and forest 
GPP data. National forest GPP loss was 552.6 TgC on average during 
2010–2021, accounting for 3.9% of gross forest GPP without ozone 
impact. Fig. 3b and Fig. S10b show the spatial distributions of the annual 
ozone-induced forest GPP loss and gross forest GPP without ozone 
impact averaged between 2010 and 2021. Areas with serious forest GPP 
losses were located in the southeastern coastal areas including Zhejiang, 
Fujian, Guangdong and Guangxi provinces, with the annual average GPP 
loss estimated at 16.7, 22.3, 32.1, and 33.3 TgC, respectively (Fig. 3b 
and Table S2). Both high forest GPP (Fig. S10b) and O3RH (Fig. 2b) were 
found in those areas. Even with a dense forest distribution (Fig. S10b), 
the forest GPP loss in certain northeastern provinces (e.g., Inner 
Mongolia) was smaller than some regions with sparse forest cover (e.g. 
East region) due to the smaller O3RH for the former. The annual average 
GPP losses were estimated at 288.4, 125.1, 40.6 and 98.5 TgC for South, 
East, Northwest and Northeast regions, accounting for 52.2%, 22.6%, 
7.3% and 17.8% of the national total loss, respectively (Table S2). 

Incorporating wheat yield loss and forest GPP losses, we assessed the 
spatial pattern of ozone-induced damage on vegetation comprehen
sively, as shown in Fig. 3c. Clear variability existed in the distribution of 
two categories of ozone-induced damage across the country. Wheat 
yield loss was more prevalent in northern areas, while forest GPP loss 
was more prevalent in southern ones. In East and South regions, espe
cially in Hebei, Shandong, Hubei and Sichuan provinces, dual ozone- 
induced damages on both wheat and forest were presented. Besides, as 
shown in Fig. S2, the ozone damage on wheat yield started in 

Fig. 2. Spatial distribution of ozone damaging metrics averaged between 2010 and 2021: (a) O3MET; (b) O3RH. The horizontal resolution is 0.1◦ × 0.1◦. White 
represents areas without winter wheat or forest cover. 
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February–March, earlier than that on forest GPP (March–April). The 
damage ended in May–June for wheat yield and in October–December 
for forest GPP. For the above-mentioned regions with abundant dual 
ozone-induced ecological impacts (part of South and East regions), 
typically, the growing season last from mid-February to late May for 
wheat and from late March to early December for forest. Forests were 
subjected to longer ozone stress than wheat, with March–May being the 
period when dual ozone-induced damages occurred. As the period was 
commonly of high ambient ozone levels within the whole year for those 
areas, implementation of effective measures on ozone pollution allevi
ation can result in great benefits on both ecological metrics. 

3.3.2. Interannual trend 
We investigated the interannual variation of ozone-induced damages 

on wheat yield and forest GPP during 2010–2021 for entire China and 
key regions. As shown in Fig. 4a, the nationwide ozone-induced wheat 
yield loss increased significantly from 17.1 Mt in 2010 to 36.1 Mt in 
2018, followed by a decline to 29.9 Mt in 2021. The annual growth rate 
of wheat yield loss (10%/yr or 1.8 Mt/yr) was much higher than that of 
wheat yield without ozone impact (3%/yr) during 2010–2021, implying 

the overall growing ozone stress on the wheat. The declining yield loss 
after 2018 resulted possibly from the restrained ozone level for the most 
recent years. 

To identify the main driver of increased interannual ozone stress, we 
compared the correlation coefficient between MDA8 ozone and wheat 
yield loss and that between gmet and wheat yield loss, and then defined 
the variable with larger correlation coefficient as the main driver. For 
the entire country, MDA8 ozone shows a much stronger correlation with 
wheat yield loss (R = 0.85) than gmet (R = 0.05), thus the significant 
ozone growth during the wheat growing season at a rate of 2%/yr was 
recognized as the major reason for the increasing wheat yield loss. 
Similarly, the increasing wheat yield losses in the East, Northwest, and 
Northeast regions were also estimated to be driven by the elevated 
MDA8 ozone concentrations (Figs. S11a–c in the Supplement). In South 
region, however, the wheat yield loss declined slightly attributed partly 
to the reduced wheat production (Fig. S11d). The annual declining rate 
of yield loss (0.5%/yr) was smaller than that of total yield (4%/yr), 
which was more affected by the growth of gmet (R = 0.71) rather than 
MDA8 ozone (R = 0.20). Fig. S12a in the Supplement shows the rela
tionship among MDA8 ozone concentration, gmet and O3MET. As MDA8 

Fig. 3. Spatial distributions of the multiple-year averages of annual winter wheat yield loss (a), forest GPP loss (b) and the percentiles of wheat yield loss and forest 
GPP loss across China (c). Yellow represents more severe wheat yield loss, pink represents more severe forest GPP loss, and orange represents the severe dual ozone 
damages. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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ozone shifts from low to high concentration, O3MET is increasingly 
sensitive to the variation in gmet, indicating the importance of stomatal 
opening on ozone absorption under high ozone exposure. Similarly, 
compared to small gmet condition with limited stomata openness, 
O3MET is more sensitive to the variation in MDA8 ozone with elevated 
gmet and stomata openness. In Northwest, Northeast and East regions 
where gmet was relatively large (greater than 0.2 for regional average), 
the ozone damage was more susceptible to the MDA8 ozone concen
tration. In South regions where gmet was smaller (<0.2), ozone uptake by 
wheat was more limited, thus the ozone-induced damage was more 
sensitive to the magnitude of gmet. 

The ozone-induced forest GPP loss has basically kept growing for the 

entire country (3%/yr or 13.9 TgC/yr, Fig. 4b) and most regions (East, 
Northwest, and South regions, Fig. S13). Similar to wheat, the annual 
growth rates of GPP loss were larger than those of forest GPP without 
ozone impact for the entire country and most regions, implying the 
enhanced ozone stress on forest. The interannual trends of ozone- 
induced GPP loss were dominated by MDA8 ozone for all regions. 
Although O3RH is detected to be sensitive to the variation in RH at 
relatively high MDA8 ozone level (Fig. S12b), the growing forest GPP 
loss had little association with RH as the interannual variation in RH was 
very limited for all the regions (Fig. S13). 

We compared our estimates in RYL and RPL during 2010–2021 with 
other studies in Fig. S14 in the Supplement. For ozone-induced wheat 

Fig. 4. Interannual trends of ozone-induced damage on vegetation and their drivers during 2010–2021: (a) Ozone-induced wheat yield loss, wheat yield without 
ozone impact, MDA8 ozone and gmet predicted from Eq. (1); (b) Ozone-induced forest GPP loss, forest GPP without ozone impact, MDA8 ozone and RH. The values 
are normalized to 2010 level and linear regression model of the time series are performed. Interannual rates (unit:/yr) of those variables are in parentheses (* 
represents p < 0.05). The correlation coefficients (R) between ozone-induced damage and drivers are provided in the upper left corner of each panel. The driver with 
larger R is marked in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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yield loss, our O3MET-based estimates are higher than the POD12-based 
estimates and are smaller than AOT40-based estimates (Fig. S14a). The 
differences resulted mainly from the different consideration of meteo
rological limitations on ozone uptake in the indicators. Application of 
AOT40 resulted in a relatively high RYL because it ignores meteoro
logical limitations on ozone uptake. The different calculation procedures 
between gmet in O3MET and stomatal conductance in POD12 caused 
O3MET-based estimates in RYL higher than that POD12-based ones. For 
ozone-induced forest GPP loss, O3RH-based estimates in our study are 
smaller than AOT40-based ones and even smaller than those based on 
land carbon model (YIBS in Yue et al. (2017)), attributed mainly to the 
applications of different model mechanisms (Fig. S14b). 

3.4. Policy implications and uncertainties 

This study estimated the long-term impacts of ozone pollution on 
winter wheat yield and forest GPP for China, and clear difference was 
found between regions attributed to the diverse ozone levels, meteoro
logical and phenological conditions. In this section, the ecological im
pacts of ozone pollution at the provincial level are further linked with its 
human health burden to help policy making of ozone pollution allevi
ation in a more comprehensive perspective. Besides ecological metrics 
RYL and WYL for wheat yield loss and RPL and GPL for forest GPP loss 
(Eqs. (6)–(9)), we also calculated an additional metrics PWCP (Popula
tion-weighted concentrations combined with Population) for each 
province to represent the ozone exposure on human health. The method 
of calculating PWCP can be found in Text Section 2 in the Supplement. 

Fig. 5 shows the ecological metrics (RYL, WYL, RPL and GPL) and 
human health metrics (PWCP) for each province. According to 50th 
percentiles of relative loss and total damage, provinces are divided into 
four types. Provinces of Type I are of both high ozone-induced relative 
risk (i.e. RYL or RPL) and large damage (i.e. WYL or GPL) on vegetation, 
for example, Henan and Shandong for wheat (Fig. 5a), and Sichuan and 
Guangxi for forest (Fig. 5b). In those areas, ozone pollution alleviation is 
in urgent need to reduce its ecological damage. Although the relative 
risk might not high in some Type-II provinces, the ozone-induced 
damages were still large because of the relatively large amount of 

wheat and forest growing there, such as Hubei and Xinjiang for wheat, 
and Yunnan and Heilongjiang for forest. Further exacerbation of ozone 
pollution would elevate the vegetation loss and thus needs to be pre
vented in those provinces. For Type-III provinces, the total ozone- 
induced damages were modest even with a high relative risk, as they 
did not grow abundant crops or forest. Those include Qinghai and Tibet 
provinces for wheat, and Shandong and Jiangsu for forest. When 
possible, the vegetation that is not sensitive to ozone pollution should be 
recommended in those areas. 

We further analyze the joint impacts of ozone pollution on ecology 
and health burden. Judged by the wheat, relatively high PWCP was 
found in areas with severe WYL (Types I and II), such as Henan, Shan
dong, Anhui, Hebei and Jiangsu (Fig. 5a). In contrast, for forest, high 
PWCP occurred more frequently in areas with smaller GPL (Types III and 
IV), and the association between ozone-induced ecological and health 
effects is weak (Fig. 5b). Most of the provinces with both large ozone- 
induced wheat yield loss and health burden are located in the East re
gion, with developed industrial economy and high ambient ozone level. 
As described in Section 3.2.2, significant enhancement in MDA8 ozone 
concentration for the past decade drove the growth in WYL in the region, 
while it greatly changed the human exposure as well (Xiao et al., 2022). 
Effective and efficient actions on emission controls for the ozone pre
cursors is crucial for reducing ozone-induced ecological and health 
damages in relatively developed and polluted regions in China. 

Limitations exist in current study. There were not enough estima
tions of POD12 and AOT40, which were only conducted in the main 
wheat producing areas in 2015–2016. Insufficient metrics estimated 
using observations prevented a full evaluation on spatiotemporal dis
tributions of O3MET and O3RH, as well as their interannual variations, 
from our estimation. For ozone risk assessment on crops, moreover, we 
considered only one crop, winter wheat, but ignored other crops that are 
subject to ozone stress, attributed also to the lack of estimations of ozone 
flux metrics for them. Future work is recommended to collect more 
PODY and to develop simplified metrics and dose-response relationships 
for different crop types, and more comprehensive understanding on 
ozone-induced ecological damage can be expected. 

Fig. 5. Classification of provinces based on ozone-induced ecological and heath impacts. (a) Relative wheat yield loss (RYL), wheat yield loss (WYL) and ozone 
exposure on human health (PWCP) by province; (b) Relative forest GPP loss (RPL), forest GPP loss (WPL) and ozone exposure on human health (PWCP) by province. 
Note: Type I represents the combination of both RYL (RPL) and WYL (GPL) greater than the 50th percentile; Type II represents the combination of RYL (RPL) less than 
the 50th percentile and WYL (GPL) greater than the 50th percentile; Type III represents the combination of RYL (RPL) greater than the 50th percentile and WYL 
(GPL) smaller than the 50th percentile; and Type IV represents the combination of both RYL (RPL) and WYL (GPL) smaller than the 50th percentile. Provinces with 
WYL less than 0.01 Mt or GPL less than 1 TgC were excluded. 
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4. Conclusions 

By combining a GAM model and a high-resolution ozone concen
tration dataset from machine learning, we develop a new metric 
(O3MET) to evaluate the long-term ozone-induced risk on winter wheat 
at the regional scale. We then applied O3MET and O3RH to explore the 
spatiotemporal pattern of ozone-induced damage on wheat yield and 
forest GPP in mainland China during 2010–2021. Ozone pollution 
caused a multiple-year average loss of 26.5 Mt for wheat yield and 552.6 
TgC for forest GPP, accounting for 17% and 4% of the national total 
wheat yield and forest GPP without ozone impact, respectively. Due to 
the joint effects of ozone pollution, meteorological conditions and 
vegetation distribution, similarities and differences can be found in 
spatiotemporal distribution of wheat yield and forest GPP losses. Ozone- 
induced wheat loss commonly occurred in the East region and forest GPP 
losses in the South. Relatively heavy dual damages on both crop and 
forest are presented in some provinces of the two regions, and March
–June is the period when dual damages occurred. The national ozone- 
induced wheat yield loss and forest GPP loss increased significantly at 
a rate of 1.8 Mt/yr and 13.9 TgC/yr during 2010–2021, respectively. 
The growth of ozone-induced damages was mainly driven by the 
elevated MDA8 ozone concentration in most regions. In East region, 
ozone pollution not only exerted a threat to vegetation, but also caused 
serious health burden. Enhanced efforts of ozone pollution alleviation in 
the polluted and developed regions in China are crucial for reducing 
ecological and health risks in the country. 
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